EVALUASI KESELAMATAN OPERASI REAKTOR RSG-GAS SETELAH 33 TAHUN

Pardi Pardi dan Purwadi Purwadi Pusat Reaktor Serbaguna BATAN Kawasan Puspiptek GD 31 Serpong, Tangerang Selatan, Banten Email:<u>pardi@batan.go.id</u>, <u>purwadi14@batan.go.id</u>,

ABSTRAK

EVALUASI KESELAMATAN OPERASI REAKTOR RSG-GAS SETELAH 33 TAHUN. Keselamatan operasi reaktor RSG-GAS merupakan faktor utama yang menjadi pertimbangan dalam mengoperasikan reaktor. Keselamatan operasi reaktor harus menjamin bahwa parameter neutronik dan termohidraulik teras RSG-GAS tidak melebihi batas keselamatan operasi (BKO) yang telah ditetapkan di dalam dokumen Safety Analysys Report (SAR). Setelah 33 tahun beroperasi banyak komponen dan sistem teras RSG-GAS yang sudah diganti namun harus dipastikan bahwa parameter operasi tidak ada yang melanggar batas operasi dan batas keselamatan. Evaluasi keselamatan operasi teras RSG-GAS dilakukan dalam rangka penilaian keselamatan periodik yang merupakan persyaratan untuk mendapat izin operasi dari pihak pengawas yaitu Bapeten. Evaluasi atau penilaian keselamatan dilakukan berdasarkan perhitungan dengan menggunakan program komputer dan eksperimen langsung melihat parameter yang terukur pada panel sensor. Perhitungan parameter neutronik dilakukan dengan program WIMSD-5B/Batan-FUEL. Hasil eksperimen dan perhitungan parameter keselamatan operasi teras reaktor RSG-GAS tidak ada yang melampaui batas operasi dan batas keselamatan namun ada yang sudah berubah dari desain. Hal ini disebabkan oleh faktor umur reaktor yang telah beroperasi 33 tahun, namun masih dalam batas rentang operasi dan keselamatan yang ditetapkan.

Kata kunci : keselamatan operasi, RSG-GAS, Batan-FUEL, WIMSD-5D, teras kerja .

ABSTRACT

OPERATION SAFETY EVALUATION OF RSG-GAS REACTOR AFTER 33 YEARS. The safety of the RSG-GAS reactor operation is a major factor being considered in operating the reactor. The safety of the reactor operation must ensure that the RSG-GAS core neutronic and thermohidaulic parameters do not exceed the operational safety limits (OSL) set out in the Safety Analysis Report (SAR) document. After 33 years of operation many of the RSG-GAS core components and systems have been replaced but must be ensured that no operating parameters violate operating and safety limits. RSG-GAS core operation safety evaluation is carried out in the context of periodic safety assessment which is a requirement to obtain an operating license from the supervisor, Bapeten. Safety evaluation or assessment is based on calculations using a computer program and direct experiments see the measured parameters on the sensor panel. Neutronic parameter calculations are performed using the WIMSD-5B / Batan-FUEL program. The results of experiments and calculation of the safety parameters of the RSG-GAS reactor core operation have not exceeded the operational and safety limits, but there have been changes in the design. This is due to the operating age of the reactor which has been operating for 33 years, but is still within the limits of the specified operating and safety range.

Keywords: operational safety, RSG-GAS, Batan-FUEL, WIMSD-5D, working core

PENDAHULUAN

RSG-GAS dibangun oleh BATAN dengan tujuan untuk produksi radioisotop, penelitian dan pengujian material nuklir serta sarana latihan bagi operator dalam rangka pembangunan Pembangkit Listrik Tenaga Nuklir (PLTN) di Indonesia. Semua selama selalu aktivitas operasi mengutamakan keselamatan baik dalam pemilihan komponan dan sistem operasi di teras reaktor RSG-GAS. Untuk memberikan feedback kepada operator maka dibutuhkan evaluasi keselamatan operasi. Pada prinsipnya, evaluasi keselamatan operasi harus mendukung kegiatan yang dapat mempengaruhi parameter neutronik dan termohidraulik operasi reaktor [1]. Beberapa kegiatan utama yang melibatkan evaluasi keselamatan operasi teras reaktor RSG-GAS yaitu manajemen bahan bakar di dalam teras, mengganti komponen dan sistem reaktor. peningkatan daya, perubahan elemen bakar baru, pengaturan eksperimen, penyimpanan bahan bakar bekas, dan komponen penuaan reaktor. Evaluasi keselamatan operasi reaktor yang terkait dengan tujuan memodifikasi sistem reaktor harus dilakukan dengan mengubah dokumen laporan analisis keselamatan reaktor yang dilakukan oleh lembaga kompeten yang relevan. Namun demikian, karena sifat eksperimental dari penelitian reaktor RSG-GAS, kegiatan tertentu yang membutuhkan evaluasi keselamatan harus dilakukan oleh

tim operasional sendiri, misalnya modifikasi konfigurasi teras karena eksperimen dan manajemen bahan bakar. Pentingnya parameter keselamatan operasi reaktor adalah untuk menjaga keselamatan dalam desain serta selama operasi reaktor RSG-GAS berlangsung. Program komputer banyak digunakan sebagai alat untuk analisis keselamatan dalam kerangka kerja pembaharuan lisensi operasi reaktor dan Keselamatan Berkala (PKB). Penilaian Tujuan dari penelitian ini adalah untuk menjelaskan parameter keamanan paling penting dari Reaktor riset RSG-GAS dari aspek operasional sementara secara bersamaan bertindak sebagai PKB. Parameter keselamatan yang dibahas dalam makalah ini adalah sebagai berikut: distribusi fraksi bakar, faktor daya puncak, margin padam, parameter operasi dan paparan radiasi. Parameter ini ada yang dihitung misalnya fraksi bakar dan faktor puncak daya dan ada yang hasil eksperimen dan pengukuran. Perhitungan dilakukan dengan menggunakan program komputer dan paket terintegrasi yang disesuaikan dengan kebutuhan praktis dalam manajemen bahan bakar teras, yaitu WIMSD-5B dan BATAN-FUEL. Kode WIMSD-5B [2] digunakan untuk menghasilkan x-section bahan bakar RSG-GAS. dari teras **BATAN-FUEL** sedangkan kode [3] digunakan dalam menghitung parameter teras. Program komputer ini digunakan untuk menghitung parameter neutronik untuk keselamatan operasi dan diverifikasi menggunakan data desain teras RSG-GAS [4].

METODOLOGI PENELITIAN

Penelitian ini dilakukan dengan cara mengumpulkan data operasi reaktor, data gangguan, insiden, perawatan reaktor, pemrosesan data dan evaluasi parameter keselamatan operasi reaktor RSG-GAS. Kegiatan pengumpulan data dilakukan untuk desain, data parameter operasi termasuk data gangguan, insiden dan kecelakaan reaktor dari laporan operasi reaktor [5].

Data eksperimental

Shutdown Margin (SDM) adalah jumlah reaktivitas yang tersedia, di mana reaktor menjadi keadaan subkritis jika semua batang kendali dimasukkan ke teras reaktor sepenuhnya. Jika satu batang kendali dengan nilai reaktivitas terbesar, yang diasumsikan sepenuhnya ditarik atau macet, batang kendali lainnya harus memiliki reaktivitas negatif untuk membuat reaktor dalam keadaan subkritis. Reaktivitas shutdown margin reaktor sangat penting ditentukan secara eksperimental; biasanya sekitar 1-5% disediakan untuk tujuan keselamatan. Namun, kriteria batang terjebak macet mengacu pada fakta bahwa, margin shut-down reaktivitas harus tersedia meskipun satu batang kendali macet tidak

dapat memasuki teras reaktor. Menerapkan kriteria batang terjebak untuk memastikan kegagalan batang kendali tunggal dan tidak akan mencegah sistem batang kendali dari mematikan reaktor. Untuk itu diperlukan margin shut-down operasi reaktor. Reaktor dapat berupa kondisi subkritis atau aman saat batang kendali macet terjadi. Subkritikalitas dengan $k_{eff} = 0,99$ dengan semua batang kendali dimasukkan ke teras reaktor bukanlah kondisi subkritis yang aman [6]. **RSG-GAS** Reaktor riset (MPR-30) beroperasi pada 15 MWt. Untuk setiap siklus sebelum percobaan kekritisan (awal siklus), itu dilakukan perhitungan kekritisan dengan tujuan (1) untuk teras kerja dan untuk menentukan batang kendali yang memiliki nilai reaktivitas terbesar (2) untuk kondisi One-Stuck-Rod (OSR). Kondisi OSR disimulasikan dengan menarik batang kendali dan kemudian dijatuhkan secara bebas ke dalam teras namun 1 batang kndali gagal masuk ke dalam teras. RSG-GAS memiliki 8 batang kendali, maka dilakukan perhitungan kritikalitas yang berbeda. Dalam kondisi OSR. dihitung faktor multiplikasi neutron (keff) hasilnya harus lebih rendah dari 0,98, atau paling tidak 1% shut-down margin untuk OSR. Jika dimasukkan untuk semua batang kendali keff harus jauh lebih kecil dari 0,98. Hal ini untuk mengatur *margin shut-down* untuk OSR setidaknya 1% karena regulasi demikian menetapkan dan juga

mempertimbangkan keakuratan alat ukur yang digunakan. Teras reaktor GAS-RSG tidak menggunakan racun yang bisa dibakar, kondisi OSR diukur pada awal teras (BOC), Kondisi OSR ini selalu diperiksa Panitia Keselamatan [7].

Perhitungan sel

memecahkan Untuk persamaan kinetika neutron, data penampang lintang makroskopik untuk berbagai bahan dalam inti telah diatur. Untuk untuk tujuan ini, digunakan program WIMSD-5B. Program ini mengidentifikasi sel-sel material sebagai pembentuk teras reaktor. Hal yang perlu dipertimbangkan mendefinisikan saat dimensi sel satuan. prinsip-prinsip konservasi rasio volume pada meterial yang dalam perakitan bahan bakar. berbeda Perakitan bahan bakar dalam konfigurasi teras RSG-GAS ditunjukkan pada Gambar 1.

Gambar 1. Konfigurasi teras RSG-GAS [8]

Dimensi sel bahan bakar dihitung dengan memperlakukan konservasi bahan bakar uranium silisida. Model sel unit bahan bakar untuk elemen bahan bakar RSG-GAS ditunjukkan pada Gambar 2.

Gambar 2. Model sel elemen bakar teras RSG-GAS[9]

Dengan menambahkan ekstra wilayah untuk sisa air dan aluminium dalam proporsi yang sama seperti pada elemen bahan bakar fisik, wilayah ini termasuk aluminium di pinggir daging dan pelat samping luar lebar aluminium air di luar lebar daging, dan saluran air yang mengelilingi elemen bahan bakar). Dalam kasus khusus elemen kendali, itu menggunakan opsi super sel dari WIMSD-5B[10], dengan memodelkan sel representatif 15 daerah. Pemodelan batang kendali dan kotak kontrol absorber serupa dengan pemodelan bahan bakar. Dimensi bahan bakar 2-D ditunjukkan pada Gambar 3.

Gambar 3. Bahan bakar teras RSG-GAS[11]

Program WIMSD-5B menghasilkan data penampang makroskopik sebagai fungsi burn-up bahan bakar dan suhu moderator. Perbedaan nilai pembakaran mulai dari 0% hingga 90% dianggap menghasilkan semua kondisi, mulai dari awal siklus, dan akhir dari siklus [12]. Suhu bahan bakar dan moderator mencakup kondisi teras secara keseluruhan untuk kondisi operasi normal dan kondisi tertentu. Makroskopis crosssection dibuat untuk menentukan kecepatan neutron. Ini menghasilkan rata-rata penampang dalam 4 kelompok energi neutron, tetapi saat menentukan kecepatan rata-rata neutron, dilakukan pada energi 69 Ini kelompok neutron. menggunakan neutron dalam kecepatan rata-rata 4 kelompok dihitung kekuatan yang berdasarkan bobot kecepatan neutron dalam 69 kelompok energi dengan fluks sel ratarata [13]. Konstanta tampang lintang

makroskopik dihitung oleh paket program WIMSD-5B dalam 4 kelompok energi neutron, batas-batas energi neutron setiap kelompok yang dipilih adalah 10 MeV, 0,821 MeV, 5,531 keV, 0,625 eV dan 1×10-Khusus untuk bahan bakar 5 eV [14]. pembangkitan konstanta kelompok yang dibangkitkan sebagai fungsi massa 235U dalam perangkat (250 gram), temperatur (dingin dan panas) dan kondisi Xe free dan setimbang. Konstanta kelompok difusi neutron sebagai fungsi temperatur dan densitas yang sesuai dengan fraksi bakar teras diperoleh dengan cara interpolasi. Dengan menggunakan konstanta tampang lintang yang telah diinterpolasi dilakukan perhitungan teras dengan fraksi bakar tertentu. Tahapan dalam perhitungan sel adalah sebagai berikut [15]:

a. X-section makroskopik sebagai fungsi
dari burn-up dihasilkan pada energi neutron
4 kelompok kondisi suhu 20°C.

b. X-section makroskopik untuk bahan bakar elemen dihasilkan sebagai fungsi dari suhu 20°C.

c. X-section makroskopik untuk moderator dihasilkan sebagai fungsi dari suhu 20°C. Pada tahap ini, tidak ada perubahan densitas moderator, demikian juga material non-fisi lainnya.

Perhitungan Teras

Prosedur desain neutronik ditunjukkan dalam diagram skematik Gambar 4.

Gambar 4. Diagram alir perhitungan WIMSD-5B[16]

Pertama, pustaka tampang lintang untuk fisil dan bahan non-fisil disiapkan dengan program perhitungan sel WIMSD-5B. Pusta data nuklir disiapkan untuk mengakomodasi rentang luas parameter desain seperti tingkat pembakaran bahan bakar, kerapatan daging bahan bakar, suhu operasional bahan bakar, dan keberadaan racun neutron (xenon dan samarium). Data reaktor pada umumnya adalah pengisian bahan bakar, strategi penempatan bahan bakar, dan panjang siklus teras dimasukkan ke dalam input program perhitungan khusus modul manajemen, Batan-EQUIL-2D [17]. Fungsi utama program Batan-EQUIL-2D adalah untuk langsung mencari keseimbangan teras tanpa mensimulasikan teras transisi. Karena program tersebut

menggunakan teori difusi 2-D. sebuah buckling aksial yang akurat harus disediakan melalui perhitungan difusi 3-D yang akurat oleh modul Batan-3DIFF. Konfigurasi teras setimbang yang telah ditentukan dengan Batan-3DIFF maka perhitugan dilanjutkan dengan menentukan panjang siklus. kemudian dilakukan pengecekan untuk mengetahui apakah reaktivitas lebih pada akhir siklus (EOC) di bawah kondisi kesetimbangan panas dan xenon adalah cukup aman. Jika panjang siklus teras awalnya ditentukan tidak tepat, maka penyesuaian harus dilakukan untuk memberikan nilai parameter neutronik pada kondisi EOC yang cukup [15]. Kemudian dilakukan perhitungan dalam teori difusi 2-D dengan Modul Batan-2DIFF ditunjukkan Gambar 5.

Gambar 5. Diagram alir perhitungan Batan-FUEL[18]

Untuk menentukan kondisi subkritis onestuck-rod dilakukan dngan program Batan-3DIFF. Jika tidak memenuhi persyaratan modifikasi keamanan, maka pada pengaturan Fuel Element (FE) seharusnya dilakukan di seluruh teras atau bahkan dilakukan penambahan atu pengurangan jumlah bahan bakar dan strategi penempatan bahan bakar semua dilakukan perubahan. Penyesuaian juga diperlukan untuk mendapatkan distribusi daya yang merata secara aksial teras reaktor untuk menjamin bahwa kondisi elemen bakar masih dalam kondisi baik [16]. Ada beberapa bahan bakar yang terlihat bercak putih atau hitam namun karena tidak terlihat adanya deformasi fisik pada bagian bercak putih atau hitam tersebut permukaan plat terlihat halus maka masih dikategorikan baik.

HASIL DAN PEMBAHASAN

Data operasi teras kerja RSG-GAS meliputi jumlah energi yang dibangkitkan, jumlah ²³⁵U, burn-up awal dan akhir siklus. Seperti yang ditunjukkan pada Tabel 1. Posisi batang kendali kritis awal, dingin tanpa xenon 275 mm. Dari posisi awal kritis batang kendali jika dibandingkan setelah 33 tahun operasi sudah berbeda. Hal ini karena berilium blok dan reflektor sudah meluruh. Posisi batang kendali awal siklus *all bank* pada daya 15 MW 286 mm dan pada akhir siklus *bank* 541 mm dan RR 546 mm.

Energi yang dibangkitkan 640,5971 MWD selama 42 hari operasi dengan 1.042,78 jam daya 15 MW. Daya yang dioperasikan 15 MW sesuai dengan kebutuhan operasi, namun jika dibutuhkan tidak tertutup kemungkinan RSG-GAS dapat dioperasikan dengan daya 30 MW.

No	Parameter	Data Total			
1	Bahan Bakar	Awal	Akhir		
	Jumlah gram ²³⁵ U dalam teras	8.671,4 gram	7.939,8 gram		
	Fraksi Bakar Rerata	23,81 %	30,24 %		
	Posisi batang kendali 15 MW	Bank : 286 mm Regulating Rod : 286 mm	Bank : 541 mm Regulating Rod : 546 mm		
2	Posisi Batang Kendali Bebas Sumber	Bank: 275 mm Regulating Rod: 275 mm	Jumlah energi 640,5971 MWD		

Tabel 1. Parameter neutronik teras	RSG-GAS
------------------------------------	---------

No	Posisi batang kendali	(%)	(\$)
1	JDA 01 + 15, Posisi E-9	1,570	2,052
2	JDA 02 + 12, Posisi G-6	1,610	2,105
3	JDA 03 + 10, Posisi F-8	1,817	2,375
4	JDA 04 + 13, Posisi F-5	1,756	2,295
5	JDA 05 + 16, Posisi C-5	1,809	2,365
6	JDA 06 + 11, Posisi C-8	1,408	1,835
7	JDA 08 + 14, Posisi B-7	1,377	1,800
8	REGROD+ 09, Posisi D-4	1,851	2,419
9	Reaktivitas Total Batang Kendali	- 13,200	-17,255
10	Reaktivitas Padam	- 6,200	-8,105
11	Reaktivitas Lebih Teras 99 Awal	7,000	9,150
12	Reaktivitas pada kondisi stuck rod	- 4,340	-5,673
13	Reaktivitas batang kendali terbesar (JDA 04 posisi F-5)	- 1,850	-2,418

Tabel 2. Nilai reaktivitas batang kendali

Neraca reaktivitas dan posisi batang kendali dapat dilihat dalam Tabel 2. Dari hasil pengukuran kalibrasi batang kendali awal siklus (BOC) teras RSG-GAS dapat diketahui neraca reaktivitas teras sedangkan susunan bahan bakar dalam teras yang optimum untuk mencapai kritikalitas dapat dilihat pada Gambar 3 menunjukkan bahwa *core* terdiri 40 bahan bakar dan 8 batang kendali. Setiap akhir siklus dikeluarkan 5 bahan bakar dan 1 bahan bakar kendali yang mempunyai reaktivitas terbesar. Reaktivitas batang kendali total hasil pengukuran untuk teras RSG-GAS ternyata ada perbedaan dengan nilai reaktivitas batang kendali total, reaktivitas lebih dan reaktivitas *stuck rod* dengan desain awal. Reaktivitas total batang kendali desain 14,2% dan reaktivitas lebihnya

9,2%. Setelah beroperasi 33 tahun nilai reaktivitas batang kendali total 13,2 % dan reaktivitas lebihnya 7,0%. Nilai reaktivitas lebih yang tersedia masih cukup untuk kebutuhan iradiasi sampel di teras RSG-GAS. Namun nilai ini tidak hanya karena penurunan kualitas bahan reaktor seperti berilium blok dan reflektor tapi juga oleh karena manajemen bahan bakar yang digunakan di teras RSG-GAS saat ini. Namun yang paling penting adalah batas keselamatan operasi masih diizinkan karena harga reaktivitas batang kendali masih mampu untuk mengontrol reaktivitas lebihnya dan pada kondisi stuck rod reaktivitas padamnya - 0,5 % sesuai dengan nilai desainnya. Nilai reaktivitas individu batang kendali berbeda untuk 8 batang kendali namun masih dianggap merata. Perbedaan harga reaktivitas batang kendali ini dikarenakan kondisi burn up di posisi batang kendali di teras yang digunakan berbeda dalam pengukuran. Ketika pengukuran dilakukan kondisi teras sudah beroperasi 33 tahun dimana kompenen teras terdegradasi. sudah Sementara pada perhitungan dilakukan kompenen teras seperti berelium blok dan reflektor dimodelkan pada kondisi baru. Perbedaan ini juga dapat disebabkan oleh karena derajat bakar bahan bakarnya berbeda setiap posisi. Semakin lama bahan bakar di dalam teras maka fraksi bakarnya semakin bertambah besar karena jumlah uraniumnya berkurang karena deflesi.

perhitungan Hasil burn-up tiap elemen bakar pada akhir periode T-98 menggunakan program yang sudah vaitu WIMSDtervalidasi program 5B/Batan-FUEL dapat dilihat dalam Tabel 3. Tabel 3 menunjukkan bahwa dari aspek reaktivitas, keselamatan pengendalian reaktivitas pada teras RSG-GAS dapat diterima. karena tidak ada yang melanggar batas keselamatan dimana kondisi stuck rod > -0.5 % $\Delta k/k$ dan FPD < 1.4 dan fluks neutron sudah memenuhi persyaratan yaitu lebih besar dari 1,25 x10¹⁴ n/cm²s pada daya 15 MW. Hal yang perlu diperhatikan adalah reaktivitas teras kondisi stuck rod untuk teras dengan muatan 250 g adalah -0,51 %Δk/k, berarti margin padam melebihi syarat batas keselamatan.

			PPF	Fraksi Bakar		Berat ²³⁵ U (gram)		
No	Kode Elemen Bakar	Posisi di Teras	(Max. 1,23)	%	MWD/THM	Sisa	Terbakar	Massa awal
1	RI-625	A-9	1,0374	6,392	10.252,000	233,355	15,935	249,29
2	RI-624	H-4	0,9813	6,663	10.690,600	232,547	16,513	249,06
3	RI-628	H-9	0,9258	6,851	10.994,500	231,932	17,058	248,99
4	RI-627	F-3	0,9436	7,098	11.393,900	231,521	17,689	249,21
5	RI-626	C-3	0,8476	7,338	11.781.300	230,497	18,253	248,75
6	RI-581	B-8	0,9993	49,861	83.938,500	124,475	123,785	248,26
7	RI-620	A-4	1,0708	12,820	20.698,700	216,808	31,882	248,69
8	RI-621	H-8	0,8909	13,722	22.275,700	241,253	34,667	248,92
9	RI-622	C-10	0,9526	13,927	22.571,700	241,339	34,681	249,02
10	RI-623	F-10	0,8499	14,253	23.045,600	241,051	35,579	249,63
11	RI-619	F-9	0,8794	14,369	23,236,500	231,735	35,865	249,60
12	RI-629	F-5	1,1327	16,195	26.240,300	200,052	49,398	249,45
13	RI-614	E-10	1,1750	19,777	32.165,500	199,595	49,205	248,80
14	RI-613	A-5	1,1867	20,579	33.497,700	197,806	51,254	249,06
15	RI-616	E-3	1,1072	20,731	33.750,400	197,721	51,709	249,43
16	RI-615	C-4	0,9296	20,878	33.994,500	197,180	52,030	249,21
17	RI-618	G-9	1,2001	21,163	34.468,700	196,738	52,812	249,55
18	RI-582	D-8	0,9608	49,965	84.125,100	124,172	123,998	248,17
19	RI-606	B-4	1,0680	26,166	42.846,100	183,222	66,478	249,70
20	RI-605	H-6	1,0711	26,623	43.615,500	183,024	66,406	249,43
21	RI-608	A-7	1,0206	26,947	44.162,500	182,187	67,203	249,39
22	RI-607	D-5	1,1823	28,504	46.792,100	178,015	71,015	249,14
23	RI-609	E-8	1,1044	28,887	47.441,700	177,285	72,015	249,30
24	RI-586	B-5	0,9579	51,252	86.435,400	120,676	126,874	247,55
25	RI-601	A-6	0,9957	32,349	53.330,800	169,127	80,873	250,00
26	RI-603	H-7	1,0048	32,784	54.073,200	167,932	81.908	249,84
27	RI-600	D-10	1,1679	32,970	54.391,900	166,972	82,128	249,10
28	RI-602	H-5	1,0789	33,821	55.848,700	165,222	84,438	249,66
29	RI-604	D-3	0,9033	34,571	57.135,500	163,422	86,348	249,77
30	RI-596	B-9	1,0385	37,923	62.915,500	153,343	93,677	247,02
31	RI-588	G-8	0,9563	52,411	88.527,700	118,025	129,985	248,01
32	RI-595	G-4	1,2258	38,663	64.199,400	151,827	95,703	247,53
33	RI-598	F-6	0,9824	39,888	66.331,000	150,064	99,576	249,64
34	RI-597	E-5	1,0735	40,956	68.192,100	147,049	102,001	249,05
35	RI-599	C-6	1,1094	41,424	69.012,500	146,540	103,630	250,17
36	RI-590	C-9	1,1013	43,533	72.706,400	139,846	107,814	247,66
37	RI-589	C-7	0,8513	44,853	75.031,000	136,505	111,025	247,53
38	RI-592	A-8	0,8023	45,609	76.367,100	134,656	112,914	247,57
49	RI-593	F-4	0,8748	45,643	76.428,000	134,828	113,212	248,04
40	RI-594	G-5	0,8860	46,870	78.601,300	131,444	115,956	247,40

Tabel 3. Hasil	perhitungan	nilai burn-up	bahan bak	ar Uranium	Silisida

			PPF	Fraksi Bakar		Berat ²³⁵ U (gram)			
No	Kode Elemen Bakar	Posisi di Teras	(Max. 1,23)	%	MWD/THM	Sisa	Terbakar	Massa awal	
1	RI-591	G-6	0,7419	50,422	84.943,200	87,758	89,252	177,01	
2	RI-587	F-5	0,9657	51,559	86.988,600	86,061	91,599	177,66	
3	RI-585	B-7	0,9780	55,965	94.996,000	85,104	92,266	177,37	
4	RI-610	E-9	1,1030	44,447	74.317,200	98,757	79,013	177,77	
5	RI-611	D-4	0,9079	37,985	63.024,700	110,287	67,553	177,84	
6	RI-612	C-5	1,0475	31,082	51.168,900	122,605	55,295	177,90	
7	RI-630	C-8	1,0052	8,259	13.271,900	162,666	14,644	177,31	
8	RI-617	F-8	0,9091	23,927	39.085,400	135,516	42,624	178,14	

Tabel 4. Hasil	perhitungan	nilai burn-u	p di	posisi batang	g kendali

Burn-up bahan bakar yang ada diposisi batang kendali dapat dilihat pada Tabel 4. Jumlah ²³⁵U di bahan bakar di posisi batang kendali tidak sama dengan bahan bakar. Jumlah massa uraniumnya dapat dilihat pada Tabel 4. *Burn up* terbesar hasil perhitungan terdapat pada posisi B-7 yaitu 55,96 %, namun masih jauh dari nilai maksimum *discharged burn up* yaitu 59,99% (SAR RSG-GAS). Material batang kendali yang selama 33 tahun sudah mengalami penggantian 1 x setelah 40 siklus operasi atau 30.000 MWD operasi.

Target yang diiradiasi pada pengoperasian reaktor RSG-GAS ini cukup beragam. Di fasilitas *Central Iradiation Position* (CIP) terdapat Sm₂O₃, Lu₂O₃, MoO₃, TeO₂, Gd₂O₃, Yb₂O₃, Sulfur, Al-6061 T6. Di beam tube S2 terdapat polietilen, hip, lutut

buatan, shielding, standstone mesin kalibrasi, mesin standstone standar dan material Stainless Steel. Fasilitas beam tube S3 belum dimanfaatkan. Di beam tube S4 terdapat Si, TiO₂, Ge. Di beam tube S5 TiO₂. Ni, Si, Al, Ca, ZrFe₃O₄. terdapat Zircaloy, BiFeO₄ Quartz, BiFeO₃ Quartz, Al Alloy, Al Culsia, Zn Alloy, TeO₂, LiC₃O₂dan material Stainless Steel. Di beam tube S6 terdapat TiO₂, Ge, Besi, material Stainless Steel. Di sistem rabbit terdapat Au-foil, Pasir, lingkungan biologi, SRM-1,2,3, AuAl. Sm₂O_{3.} dan di fasilitas Power Rump Test Facility (PRTF) terdapat pin bahan uji bahan bakar. Sementara semua fasilitas iradiasi yang ada di RSG-GAS, neutron scattering mendominasi utilisasi fasilitas iradiasi dan sebagai pengguna adalah PSTBM.

			• •					
	Lalzasi	Batas	Laju Paparan (µSv/jam)					
No	Dengukuran	Maksimum	Tidak C	Operasi	Operasi 15 l	MW		
	Гендикитан	(µSv/jam)	Rerata	Maks	Rerata	Maks		
La	ju Dosis Gamma							
1.	Diatas Permukaan Kolam	$1,25 \times 10^{3}$	2,51	$6,00 imes 10^0$	$1,09 imes 10^1$	$2,20 \times 10^{1}$		
2.	Lantai 13,00 m	$1,25 \times 10^{3}$	2,35	$6,80 imes 10^0$	$7,07 imes 10^0$	$2,20 \times 10^{1}$		
3.	Lantai 8,00 m	$1,25 \times 10^{3}$	3,88	$1,40 \times 10^{1}$	$1,20 \times 10^{1}$	$5,60 imes 10^1$		
4.	Lantai 0,00 m	$1,25 \times 10^{3}$	3,35	$1,60 imes 10^1$	$1,37 \times 10^{1}$	$5,20 \times 10^{1}$		
5.	Lantai -6,50 m	$2,50 imes 10^1$	2,05	$8,40 imes 10^0$	$3,63 \times 10^{0}$	$1,20 \times 10^{1}$		
Laju Dosis Neutron								
1.	Lantai 0,00 m	$2,50 \times 10^{1}$	-	-	$2,62 \times 10^{-2}$	1,60×10 ⁻¹		

Tabel 5. Laju Paparan Radiasi

Pengendalian lingkungan terhadap bahaya kontaminasi radioaktif secara awal dapat dilakukan dengan mendesain gedung, ruangan atau fasilitas fisik, pemantauan kontaminasi, dan dekontaminasi. Desain gedung, ruangan atau fasilitas fisik harus mempertimbangkan potensi terjadinya kontaminasi, oleh karena itu harus dilakukan pembagian daerah kerja. Permukaan tempat lantai. dinding kerja, harus mudah didekontaminasi. Selain itu sistem ventilasi, sanitasi dan fasilitas pendukung seperti penyimpanan limbah radioaktif, fasilitas penyimpanan zat radioaktif, ruang ganti, dan shower harus disesuaikan dengan persyaratan fasilitas atau laboratorium. Pemantauan kontaminasi dilakukan untuk memastikan tingkat kontaminasi tidak melebihi ketentuan yang sudah ditetapkan. Pemantauan kontaminasi dapat dilakukan dengan 2 (dua) metode, yaitu metode langsung dan tidak langsung.

Pemantauan secara langsung dapat diterapkan dalam medan radiasi rendah,

biasanya untuk mengetahui kontaminasi permukaan bahan, pakaian, dan kulit.

Pemantauan secara tidak langsung dengan cara uji usap diterapkan apabila laju dosis latar belakang tinggi, akan mengidentifikasi kontaminasi radioaktif secara akurat, geometri pengukuran tidak cocok, memantau kontaminasi beta energi rendah dan permukaan yang akan dipantau tidak dapat diakses dengan probe pemantau kontaminasi. Dekontaminasi cara fisika dapat dilakukan dengan proses pencucian, penyemprotan, pengerokan dan pengelupasan. Dekontaminasi secara kimia dapat dilakukan dengan proses kimia antara lain pengendapan dan pelarutan. Dalam setiap kegiatan, Petugas Proteksi Radiasi (PPR) melakukan pengukuran paparan radiasi gamma pada titik-titik lokasi tertentu serta ruangan-ruangan yang berpotensi tingkat radiasi tinggi, Laju paparan radiasi ini dapat dilihat dalam Tabel 5 dan Tabel 6. Dari hasil pemantauan daerah kerja tidak

ada paparan radiasi yang melebihi batas yang ditetapkan.

		Batas				
No	Lokasi Pengukuran	Maksimu	Tidak Oper	rasi	Operasi 1:	5 MW
	6	m (Bq/L)	Rerata	Maks	Rerata	Maks
α -	β Aerosol					
1	Lantai 13,00 m (KLK 01 CR 002)	α 7,03 x 10 ⁻¹	7,26 x 10 ⁻⁴	3,42 x 10 ⁻³	8,16 x 10 ⁻⁴	5.12 x 10 ⁻³
2	Lantai 13,00 m (KLK 01 CR 001)	β 7,03 x 10 ⁻¹	8,21 x 10 ⁻⁵	6,24 x 10 ⁻⁴	8.87 x 10 ⁻⁵	7,24 x 10 ⁻⁴
3	Lantai 8,00 m dan 13,00 m (KLK 04 CR 002)	α 7,03 x 10 ⁻¹	5,32 x 10 ⁻⁵	3,12 x 10 ⁻⁴	6,02 x 10 ⁻⁵	4,65 x 10 ⁻⁴
4	Lantai 8,00 m dan 13,00 m (KLK 04 CR 003)	β 7,03 x 10 ⁻¹	4,26 x 10 ⁻⁴	2,56 x 10 ⁻³	4,87 x 10 ⁻⁴	4,16 x 10 ⁻³
No	ble Gas					
1	Stack (KLK 06 CR 002)	1,85 x 10 ⁴	4,11 x 10 ³	6,14 x 10 ³	4,89 x 10 ³	7,23 x 10 ³
2	Stack (KLK 06 CR 001)	1,85 x 10 ⁴	8,17 x1 0°	$2,48 \ge 10^1$ 2	2,18 x 10 ¹	4,42 x 10 ¹
Ak	tivitas Iodine					
1	Stack (KLK 06 CR004)	8,5 x 10 ⁴	-		-	
Tir	igkat Konsentrasi Rad	ionuklida G	ross Beta (B	Sq/l)		
1	Lantai 13,00 m	7,03 x 10 ⁻¹	3,46 x 10 ⁻²	4,24 x 10 ⁻²	3,97 x 10 ⁻²	5,36 x 10 ⁻²
2	Lantai 0,00 m	7,03 x 10 ⁻¹	2,12 x 10 ⁻²	4,67 x 10 ⁻²	2,48 x 10 ⁻²	5,47 x 10 ⁻²

Tabel 6. Radioaktivitas Udara

Tabel 7 adalah hasil pengukuran parameter operasi sistem proses Reaktor RSG-GAS. Parameter operasi tidak ada yang melanggar batas operasi seperti temperatur maksimum air pendingin < 50°C. Hal ini dapat dicapai dilakukan kerena pemeliharaan sistem proses secara rutin karena merupakan satu bagian dari kegiatan pengoperasian sistem atau peralatan. Dengan adanya pemeliharaan yang baik maka akan membuat kinerja maupun kemampuan operasi sistem reaktor menjadi semakin baik, efisien dan tahan Pemeliharaan yang dilakukan di lama. reaktor RSG - GAS merupakan suatu kegiatan terprogram dan telah dilaksanakan secara berkala. Dari data hasil kegiatan

pemeliharaan katup isolasi terlihat bahwa katup mempunyai kecepatan menutup yang baik yaitu berada dalam rentang waktu 90 -100 detik, seperti yang telah ditetapkan dalam Safety Analisis Report (SAR) untuk RSG-GAS. Dengan reaktor kecepatan menutup tersebut diharapkan apabila terjadi gangguan kebocoran air pendingin reaktor pada sistem pemipaan pendingin primer, maka reaktor tidak mengalami kekurangan air sebagai pendingin bahan bakar. Dengan adanya pemeliharaan yang baik, maka frekuensi terjadinya gangguan atau menjadi semakin sedikit. kerusakan sehingga sistem reaktor dapat berfungsi sesuai yang diharapkan.

				Potos	Harga Operasi		
No	Parameter	Satuan	KKS	Operasi	Min	Maks	Keterangan
I	Pendingin Primer						
1.	Suhu keluar teras	°C	JE01CT001	< 49.00	25.00	41.00	Normal
2.	Suhu masuk teras	°C	JE01CT811	< 42,00	25,00	37,50	Normal
3.	Suhu masuk BC02	°C	JE01CT002	<51.00	26.00	43.00	Normal
4	Suhu keluar BC02	°C	IF01CT003	< 42.00	24 50	37 50	Normal
	Suhu masuk BC01	°C	JE01CT003	< 51.00	24,50	43 50	Normal
6.	Suhu keluar BC01	°C	JE01CT005	< 42.00	25.00	37.50	Normal
7.	Suhu masuk teras	°Č	JE01CT006	< 42.00	27.00	38.00	Normal
8.	Laju alir	m ³ /jam	JE01CF811	> 2902	3150	3150	Normal
9.	Laju alir	m ³ /jam	JE01CF821	> 2902	3150	3150	Normal
10.	Laju alir	m³/jam	JE01CF831	>2902	3150	3150	Normal
11.	pH	-	KBE01CQ02	\geq 5,20	5,5	6,5	Normal
12.	Konduktivitas	μS/cm	KBE01CQ01	<u><</u> 8,00	1,19	1,34	Normal
II	Pendingin Sekunder	ſ					
1.	Suhu masuk BC01	°C	PA01CT001	< 40,00	27,50	37,00	Normal
2.	Suhu keluar BC01	°C	PA01CT002	< 50,00	26,20	39,50	Normal
3.	Suhu masuk BC02	°C	PA02CT001	<40,00	26,50	36,00	Normal
4.	Suhu keluar BC02	°C	PA02CT002	<50,00	26,80	40,00	Normal
5.	Laju alir	m³/jam	PA01CF001	> 1400	1950	2050	Normal
6.	Laju alir	m³/jam	PA01CF002	> 1400	1850	2000	Normal
7.	Laju alir	m³/jam	PA02CF001	> 1400	1850	1950	Normal
8.	Laju alir	m³/jam	PA02CF002	> 1400	1800	1900	Normal
9.	Level kolam	m	PA04CL002	> 4.00	4.17	4.50	Normal
	menara pendingin			,	-,-,	-,	
10.	Level kolam	m	PA04CL001	> 1.80	2.10	2.35	Normal
	penyimpan air		D 4 01 CD 00 1	0.10	0.17	0.00	
11.	Tek. Isap pompa	bar	PAUICPUUI	> 0,10	0,17	0,22	Normal
12.	Tek. Isap pompa	bar	PA02CP001	> 0,10	0,19	0,20	Normal
15.	nek. Isap pompa	Dar	PA03CP001	> 0,10	0,19	0,22	Normal
14.	рп	-	PAULCQ02	0,30 - 8,00	7,55	7,05	Normai
15.	Konduktivitas	μS/cm	PAUICQUI	<u><</u> 1.500	273	950	Normal
III	Kolam Reaktor						
1.	Kontrol level	m	JAA01CL001	> 12,41	12,50	12,50	Normal
2.	Kontrol level	m	JAA01CL811	> 12,41	12,44	12,52	Normal
3.	Kontrol level	m	JAA01CL821	> 12,41	12,44	12,52	Normal
4.	Kontrol level	m	JAA01CL831	> 12,41	12,45	12,52	Normal
1	Kolam Penyimpan B	ahan Bakar	Bekas	6.00	6.50	6.60	
1.	Kontrol level	m	JAA02CL001	> 6,00	6,50	6,60	Normal
2.	Suhu	J° PC	JAA02C1001	< 48,00	24,00	36,00	Normal
<u> </u>	Sunu Damarian Ain Kala	<u>ىر</u>	JAA02C1002	< 48,00	24,00	36,00	Normal
<u>V</u>	Pemurnian Air Kola	m3/:	KDE01CE002	. 20.00	20.00	41.50	NT
1.	Lajualir	m ^{3/} jam	KBE01CF003	> 20,00	38,00	41,50	Normal
2. 2	Tekanan	bar	KBE01CP005	< 1,50	0,30	0,45	Normal
<u> </u>	Dandingin Valam	Dar	KDEUICP000	< 2,00	0,03	0,70	Normai
<u></u> 1	Telenen	han		> 0.50	1 10	1.00	Normal
1.	Tekanan	bar	JNATUCP001	> 0,50	1,10	1,90	Normal
∠. 2	Tekanan	Dar	JINAZUCPUUI INIA 20CD001	> 0,50	0,80	2,20	Normal
<u>э.</u> VII	Demurnian Kolom D	Dal onvimpon D	han Bakar Baka	> 0,00	0,90	2,90	mormal
1	I ainalir	m ³ /iem	FAK01CE002	200	20.00	22.00	Normal
2	Rada tak strainar	hor	FAK01CF003	> 0,00 > 2,00	20,00	0.10	Normal
2.	Subu masule <i>U F</i>		FAK01CT001	< 2,00	23.00	38.00	Normal
<u>э</u> .			TAKUIC IUUI	<u>\</u> 40,00	23,00	30,00	Normal
4.	Suhu keluar H E	°C	FAK01CT003	<u><</u> 37,00	20,00	30,00	Normal

Tabel 7. Parameter operasi sistem proses reaktor

Keberhasilan dari kegiatan perawatan dan pemeliharaan sistem pendingin primer JE-01, selain didukung oleh pelaksanaan kegiatan pemeliharaan yang telah teratur dengan baik, juga didukung oleh kondisi ruangan dari peralatan tersebut ditempatkan yang selalu terjaga kebersihannya. Karena kondisi tersebut membuat peralatan selalu dalam kondisi yang terjaga bersih dan terpelihara.

Hasil analisis kuantitatif dan kualitatif dari cuplikan sampel air pendingin primer KBE01. Dari hasil pencacahan wadah merineli yang telah terisi sampel air pendingin primer ketika reaktor tidak beroperasi hanya terdeteksi Co-60, dan ini pun bukan aktivitas dari air pendinginnya, akan tetapi dari wadah merinelinya yang telah terkontaminasi. Hal ini dapat terjadi karena sistem pemurnian air pendingin primer bekerja dengan baik sehingga nuklida yang terbentuk pada operasi reaktor sebelumnya, telah habis tertangkap oleh resin penukar ion pada sistem pemurnian air KBE01 dan air pendingin primer telah menjadi bersih dari unsur atau nuklida pengotor. Dari hasil pencacahan wadah merineli yang telah terisi sampel air pendingin primer pada saat reaktor beroperasi tanpa muatan batu topaz, terdeteksi nuklida Mn54 dan Co-60. Mn-54 dengan aktivitas 33,51 Bq/m3 dan kenaikan aktivitas Co-60 yang menjadi 20,02 Bq/m³ diduga diakibatkan oleh korosi pada pompa,

pipa ataupun filter mekanik pada sistem pemurnian air primer. KBE01. Sedangkan dari hasil pencacahan wadah merineli yang telah terisi sampel pada saat reaktor beroperasi dengan muatan batu topaz ada sedikit kenaikan aktivitas Mn-54, vaitu menjadi 43,54 Bq/m³ dan pada Co-60 menjadi 29,51 Bq/m³. Kenaikan aktivitas kedua nuklida tersebut diakibatkan oleh sumbangan dari pengotor batu topaz. Akan tetapi kenaikan aktivitas pengotor tersebut masih jauh di bawah nilai ambang batas tingkat baku mutu menurut Peraturan Kepala Bapeten nomor 7 tahun 2013 yaitu 3,0x10³ Bq/m³ belum terlampaui maka reaktor GA. Siwabessy beroperasi dengan aman.

KESIMPULAN

Hasil penelitian ini menunjukan bahwa konfigurasi teras kerja reaktor RSG-GAS berdaya termal 30 MW namun dioperasikan 15 MW selama satu siklusnya memenuhi keselamatan syarat operasi dengan menggunakan bahan bakar ²³⁵U dengan tingkat muat 250 g dengan pola manajemen bahan bakar dari dalam keluar. Berdasarkan hasil penelitian kemampuan batang kendali untuk memadamkan reaktor masih handal setelah 30 tahun beroperasi. Kemampuan reaktor menghasilkan fluks neutron termal maksimum di daerah pusat rerata sebesar 2.5×10^{14} n/cm²s, margin padam minimum -3,63 % Δ k/k (*stuck rod*) dan panjang siklus 42 hari, juga memiliki fasilitas iradiasi rerata

di dalam teras dengan fluks neutron termal 2,0 10¹⁴ n/cm²s. Secara umum reaktor x beroperasi dengan aman dan selamat selama 1.042,78 jam dengan energi yang dibangkitkan 640,5971 MWD, scram terjadi sebanyak 13 kali. Belum semua fasilitas iradiasi digunakan secara optimal karena masih sering kosong tidak dimanfaatkan oleh stake holder. Neutron scattering mendominasi fasilitas utilisasi iradiasi dan sebagai PSTBM. Penggunaan pengguna adalah fasilitas iradiasi rabbit system dan fasilitas iradiasi di teras reaktor RSG-GAS perlu ditingkatkan.

UCAPAN TERIMA KASIH

Kami mengucapkan terima kepada Kepala PRSG yang telah memberikan kesempatan kepada kami untuk melakukan kegiatan ini. Terimakasih juga kepada teman-teman operator dan supervisor atas masukan dan sarannya sehingga membuat tulisan ini jauh lebih bagus dan dapat digunakan untuk mengevaluasi keselamatan operasi reaktor RSG-GAS.

DAFTAR PUSTAKA

[1]. SETIYANTO DAN TUKIRAN S. Analysis of gamma heating at triga mark reactor core bandung using plate type fuel. *Jurnal Tri Dasa Mega*. 2016;18(3):127-134.

- [2]. MOHAMMAD RAHGOSHAYA, OMID NOORI- KALKHORAN. Calculation of control rod worth and temperature reactivity coefficient of fuel and coolant with burn-up changes for VVRS-2 MWth nuclear reactor. *Journal* of Nuclear Engineering and Design. 2013; 256:322-331.
- [3]. M. VARVAYANNI, N. CATSAROS, M. ANTONOPOULOS-DOMIS. Control rod worth calculations using deterministic and stochastic methods, *Annals of Nuclear Energy*. 2009;36(11-12):1718-1725.
- [4]. TERUEL, F.E, RIZWAN-UDDIN. An innovative research reactor design. *Journal of Nuclear Engineering and Design.* 2009;239(2): 395-407.
- [5]. FARHAN MUHAMMAD, ASAD MAJID, Kinetic parameters of a material test research reactor fueled with high density U₃Si₂ dispersion fuels. *Journal of Progress in Nucl. Energy* 2009;51(1):141-145.
- [6]. LILY SUPARLINA, Manajemen konversi teras RSG-GAS berbahan bakar silisida tingkat muat tinggi. Jurnal Tri Dasa Mega. 2013; 15 (3):137-149.
- [7]. ROKHMADI DAN TUKIRAN S. Efek densitas bahan bakar terhadap parameter koefisien reaktivitas teras RRI. *Jurnal Tri Dasa Mega*. 2013; 15 (2): 77-89.
- [8]. Batan. Laporan Analisis Keselamatan RSG-GAS rev 10.1, 2011.

- [9]. TUKIRAN S, TAGOR MS, SURIAN P. Analisis pengaruh densitas bahan bakar silisida terhadap parameter kinetik teras reaktor RSG-GAS. Jurnal Penelitian Fisika dan Aplikasinya. 2013;3(1):19-30.
- [10]. IMAN K, TAGOR MS. Desain teras alternatif untuk reaktor riset inovatif (rri) dari aspek neutronik, *Jurnal Tri Dasa Mega*. 2014;16 (1):1-10.
- [11]. LILY S, TUKIRAN S. Analisis pola manajemen bahan bakar desain teras reaktor riset tipe MTR. *Jurnal Tri Dasa Mega*. 2014;14(3): 89-99.
- [12]. TUKIRAN S, SURIAN P, TAGOR MS, LILY S, JATI S. Desain konseptual teras reaktor riset inovatif berbahan bakar uranium-molibdenum dari aspek neutronik. *Jurnal Tri Dasa Mega*. 2012;3(14):178-191.
- [13]. S. PINEM, TM. SEMBIRING, PH. LEIM. Neutronic and thermal-hydraulic safety analysis for the optimization the Uranium target in the RSG-GAS reactor. *Journal of Atom Indonesia*.2016; 42(3):123-128.
- T. SURBAKTI AND PURWADI.
 Karakteristik Reaktivitas Teras Kerja
 RSG-GAS Selama 30 Tahun
 Beroperasi. Jurnal Penelitian Fisika dan
 Aplikasinya (JPFA). 2017; 7(1): 13-26
- [15]. SURBAKTI T, PINEM S, AND SUPARLINA L. Dynamic Analysis on

the Safety Criteria of the Conceptual Core Design in MTR-type Research Reactor. Journal Atom Indonesia. 2018;44(2):89-98

- [16]. LIEM PH, SURBAKTI T, AND DONNY S. Kinetics parameters evaluation on the first core of the RSG GAS (MPR-30) using continuous energy Monte Carlo method. Progress in Nuclear Energy
- [17]. PINEM S, LIEM PH, TAGOR MS AND SURBAKTI T. Fuel element burnup measurements for the equilibrium LEU silicide RSG GAS (MPR-30) core under a new fuel management strategy. Annals of Nuclear Energy. 2016;98: 211-217
- [18]. TUKIRAN S. AND M. IMRON. Fuel burn-up calculation for RSG-GAS working core. Jurnal Penelitian Fisika dan Aplikasinya. 2017;7(2):89-101