UPGRADE SISTEM DETEKTOR PCD KE SDD PADA ALAT XRF QUANT'X IRM

Helmi Fauzi R¹⁾, Agus Jamaludin²⁾ Pusat Teknologi Bahan Bakar Nuklir, BATAN Serpong, Banten, Indonesia 15313 ¹⁾helmi_fauzi@batan.go.id

ABSTRAK

Kemajuan teknologi pendeteksi hasil sinar *X* - *Ray fluoresence* semakin berkembang, adanya teknologi elektronik semikonduktor membuat sistem pendeteksian semakin ramping dan simpel. Penggantian bagian detektor alat XRF Arl – quant'X bertujuan untuk memperbaiki sekaligus meningkatkan kemampuan alat tersebut di instalasi radiometalurgi- PTBBN. Peningkatan performa *X* –*ray fluorescence* dengan meng – *upgrade* dari PCD (*Peltier Cooled Detector*) ke SDD (*Silicon Drift Detector*) berhasil dibuktikan dengan data kalibrasi gain DAC yang sesuai pengaturan (*setting*), Uji kestabilan operasi di perulangan 50 kali proses yang memenuhi kategori stabil (*On Spec*), nilai resolusi terbaik yang ditunjukkan oleh nilai *Full Width at Half Maximum* (*FWHM*) sebesar 158 KeV, dan hasil pengujian kualitatif dengan ketepatan identifikasi spektrum di setiap unsurnya (*Zr*, *Sn*, *Cr* & *Ni*) serta hasil pengujian kuantitatif komposisi unsur standard zirconium (*Zr* = 98 %, *Sn* = 1,4 %, *Cr* = 0,1%, *Ni* = 0,05 %) telah sesuai dengan sertifikat *CRM JAEA* yang menjadi acuannya.

Kata Kunci : Upgrade, X-ray Fluoresence, PCD detector, SDD detector

ABSTRACT

The progress of x-ray detection technology with fluorescence is growing up, the presence of semiconductor electronic technology makes detection system more slim and simple. The replacement of XRF Arl-quant'X detector section aimed at fixing and improving the equipment at the radiometallurgi installation – PTBBN. Improved performance of X -ray fluorescence by upgrading from PCD (Peltier Cooled Detector) to SDD (Silicon Drift Detector) has been proven with calibration data of adjustable DAC gain setting, he stability test operation in 50 repetitions of the process that meets the stable category (On Spec), the best resolution value shown by the value of Full Width at Half Maximum (FWHM) of 158 KeV, and the results of qualitative testing with the accuracy of spectrum identification in each element (Zr, Sn, Cr & Ni) and the result of quantitative testing of standard zirconium element composition (Zr = 98%, Sn = 1,4%, Cr = 0,1%, Ni = 0,05%) are in accordance with JAEA CRM certificate which become its reference .

Keywords : Upgrade, X-ray Fluoresence, PCD detector, SDD detector.

I. PENDAHULUAN

X – Ray Fluoresence adalah suatu metode analisis yang bertujuan menentukan suatu jenis unsur dengan memanfaatkan tumbukan atom dan sinar –X yang akan menghasilkan beberapa puncak spektrum energi sebagai perwakilan karakteristik unsur tersebut (kualitatif) dan menentukan estimasi jumlah konsentrasi unsur penyusun dalam suatu sampel dengan cara membandingkan intensitas sampel dengan standar (kuantitatif) [1]. Analisis kandungan unsur dalam bahan ditentukan atas dasar sinar-x karakteristik yang dideteksi. Adapun kemampuan XRF dalam mendeteksi unsur - unsur

ISSN 1979-2409

yang lebih besar dari 0,840 keV, sedangkan berdasarkan kebolehjadian terjadinya sinarx yang dideteksi, XRF mempunyai kemampuan mendeteksi bahan dengan konsentrasi lebih besar dari 0,01% [2]. Dalam perkembangannya teknologi detektor XRF semakin berkembang dari penggunaan detektor isian gas kemudian detektor PCD (Peltier Cooled Detector) dan sampai saat ini menggunakan SDD (Silicon Drift Detector). Salah satu XRF perusahaan ternama pembuat yaitu Thermo-Scientific (USA) mulai mengembangkan penggunaan silicon drift sebagai detektor menggantikan teknologi pemanfaatan peltier effect (thermoelectric cooling) yang dinilai masih mempunyai beberapa kekurangan yaitu terbatasnya jumlah fluk panas yang dihamburkan, menurunnya kemampuan seiring dengan lemahnya fluk panas, dan kurang efisien dalam kinerja sebagai sistem kompresi uap[6]. Sementara itu teknologi silicon drift sebagai detektor mulai dikembangkan karena memiliki beberapa kelebihan yaitu rendahnya gelombang noise yang dihasilkan, resolusi tinggi dengan cakupan area yang lebih luas, dan cepatnya waktu pencapaian puncak (high count rate) [4]. SDD adalah detektor semikonduktor teknologi baru mutakhir yang banyak digunakan di laboratorium serta percobaan ruang angkasa untuk mendeteksi foton di daerah sinar-X energi rendah [5-7]. SDD berfungsi mirip dengan fotodioda Si-PIN namun memiliki struktur elektroda yang berbeda sehingga menghasilkan kapasitansi detektor yang sangat rendah pada kondisi operasi yang sama dan mempunyai resolusi energi yang lebih baik daripada dioda Si-PIN dengan ukuran yang sama. SDD adalah jenis dioda persimpangan PIN yang terdiri dari n + titik anoda yang dikelilingi oleh beberapa cincin + p, n lapisan intrinsik massal dan pilar katoda planer. SDD dengan elektroda semacam ini tersedia secara komersial untuk berbagai aplikasi dan penelitian masih berlanjut untuk perbaikan teknologinya [8]. Kelebihan lain yang dimiliki SDD adalah sistem pendingin detektor yang sudah tidak lagi menggunakan nitrogen cair, melainkan menggunakan sistem peltier tingkat lanjut (electrical cooling) sehingga pengoperasian didalam laboratorium lebih bersih dengan tidak adanya dewar di sekitar alat tersebut, memiliki bobot yang relatif ringan dengan dimensi yang kecil akan memudahkan dalam pemasangan detektor SDD pada alat XRF yang konvensional sekalipun [9].

Dalam makalah ini akan disampaikan resume proses instalasi pemasangan detektor SDD berikut dengan pemenuhan persyaratannya dan membandingkan kinerja detektor SDD dengan detektor PCD yang telah mengalami kerusakan yaitu menggunakan data hasil proses yang pernah dilakukan sebelumnya.

II. METODOLOGI

Melakukan pengecekan kondisi alat sebelum dilakukan perbaikan yaitu dengan cara memantau kondisi parameter detektor PCD melalui *spectrometer manager* yaitu sebuah tool penampil instrumen primer secara *real time*, kemudian melepas *power supply* dan detektor PCD serta menggantinya dengan 1 set perangkat detektor SDD. Melakukan *DPP Cal* yang berfungsi untuk mengkalibrasi energi dari sumber x-ray agar puncak pulsa yang dihasilkan sesuai dengan energi masing masing unsurnya [10]. Menguji resolusi dan stabilitas kinerja alat terkait kemampuan membedakan jenis unsur dan konsistensi hasil pengukuran secara berkelanjutan. Terakhir, melakukan pengujian menggunakan bahan standar dan sampel acuan menggunakan "*method save*" secara kualitatif dan kuantitatif kemudian membandingkan hasil pengujian dengan hasil sebelumnya.

III. HASIL DAN PEMBAHASAN

Perbandingan detektor PCD dan detektor SDD ditunjukkan table 1.

Variable	PCD detector	SDD detector	
Luasan Area	Si (Li) 15 mm ²	Si 30 mm ²	
Window	< 7.6 micron (0.3 mil)	< 12.5 micron (0.492 mil)	
FWHM	155 eV	150 eV	
Energy Adjusment	3 area (low , medium , high)	1 area (mean medium)	
Date Time	50 %	30 %	

rabor is robariangari opoolintaoi Dotottor
--

Energy Adjustment Report Thermo Fisher Scientific Inc., Madison, Wisconsin, USA Acquisition Manager 7.2 (Build 134) Adjustment performed: 10/18/16 15:01:13	Energy Adjustment Report Thermo Fisher Scientific Inc., Madison, Wisconsin, USA Acquisition Manager 7.2 (Build 134) Adjustment performed: 10/19/16 09:10:10			
Conditions Voltage (kV): 18 Filter: Pd Medium	Conditions Voltage (kV): 18 Filter: Pd Medium			
Energy of line (keV): 8.041	Energy of line (keV): 8.041			
Initial gain DAC setting: 32500 Final gain DAC setting: 32500	Value Initial gain DAC setting: 32500 Final gain DAC setting: 32493			
Time Constant (µs) 2 Error (eV): 0.0 Uncertainty (eV): 0.00	Time Constant (μs) 2 Error (eV): 0 0 Uncertainty (eV): 1.27			
FWHM (eV): 0.0 Zero Width (eV): 0.0 Peak Count Rate (cps/mA): Livetime (seconds): 0.00 Current (mA): 0.00	FWHM (eV): 161.7 Zero Width (eV): 76.0 Peak Count Rate (cps/mA): 240448.91 Livetime (seconds): 10.58 Current (mA): 0.22			
Gb1.a Hasil E.adjustment sebelum DPP cal	Gb1.b Hasil E.adjustment setelah DPP cal			

Gambar 1. Perbandingan Energy Adjusment

Setelah dilakukan installasi detektor SDD dan power supply nya, langkah selanjutnya adalah melakukan *setting* energi XRF terhadap detektor baru menggunakan unsur Cu (8,041 Kev) sebagai bahan acuan (*energy adjustment*) kemudian didapat hasil yang tidak optimal dikarenakan belum sinkronnya sistem beam pemancar sinar x / *x-ray tube* dengan detektor (Gb. 1a). Oleh karena itu dalam tahap ini diperlukan kalibrasi pulsa digital pada detektor (*DPP cal*) yang merupakan tahapan penting setelah penggantian perangkat utama seperti SDD detektor. Hasilnya adalah nilai selisih gain DAC awal 32500 dan akhir 32493 sebesar 7 poin (batasan 100) yang menunjukkan penguatan *energy relative* optimal [2] dan energi resolusi FWHM (eV) sebesar 161.7 eV, waktu operasi (*live time*) 10,58 *second* dan arus listrik (*current*) sebesar 0,22 mA (sesuai spesifikasi) yang ditunjukkan oleh Gb.1b.

Stability Test Report Thermo Fisher Scientific Inc., Madison, Wisconsin, USA Acquisition Manager 7.2 (Build 134) Test performed: 10/19/16 13:55:17									
Conditions									
Voltag	e (kV):	18							
Curren	t (mA):	0.20 mA							
Livetir	me (seconds):	45							
Filter:		Pd Medium							
Peak energ	y (keV):	8.041							
Peak			Peal	Peak		al			
Run #	FWHM	Centroid	Counts	RSD	Counts	RSD	Time		
1	162.5	8040	1688727	0.00%	2741565	0.00%	13:56:31		
2	162.2	8040	1690486	0.07%	2743765	0.06%	13:57:42		
40	161.6	0041	1(02722	0.100/	0746044	0.000/	14.52.57		
49	101.0	8041	1692722	0.10%	2740244	0.08%	14:52:57		
50	101.9	8041	1090134	0.10%	2/41212	0.08%	14:54:07		
Theoretical RSD:			0.08%		0.06%				
Instrument contribution:			0.06%		0.05%				
OVERALL Instability		0.09 %	0.08 %						
INSTRUMENT Contribution		0.06 %	0.05 %)					
Test SPEC		0.23 %	0.20 %	,					
Test RESU	LT		ON SPEC	ON SPI	EC				

Gambar 2. Hasil Stability Test.

Sistem kerja XRF Arl quant'x dibangun dengan tingkat otomatisasi yang bertingkat dengan prinsip dasar ketelitian dalam membedakan energi keluaran di setiap spekturm yang dihasilkan, oleh karena itu tingkat kestabilan sesuai waktu yang dibutuhkan dalam sistem proses keseluruhan menjadi persyaratan penting dimana terdapat beberapa instrumen/ bagian dari alat yang berkontribusi terhadap hasil peak FWHM yang

dihasilkan. Pada gambar 2 menunjukkan bahwa hasil dari 50 kali perulangan cacahan didapat peak FWHM yang relatif stabil dengan peak rata rata sebesar 0,08% dan total *count* sebesar 0,06% hal ini berarti penyimpangan (*error*) yang dihasilkan relatif kecil dan tidak berpengaruh terhadap hasil cacahan di setiap perulangan sistem operasinya. Adapun kontribusi peralatan instrumen pendukung dalam sistem XRF masuk dalam kategori ON SPEC dimana hasil *Overall instability*, instrumen kontribusi dan uji spesifikasi (*tes spec*) masih dalam batas normal yaitu dibawah 1 %.

Resolution Test Report

Thermo Fisher Scientific Inc., Madison, Wisconsin, USA Acquisition Manager 7.2 (Build 134) Test performed: 10/19/16 09:33:47

Conditions

Voltage (kV):	18
Current (mA):	0.02 mA
Livetime (seconds):	45
Filter:	Pd Medium
Peak energy (keV):	8.041

Resolution					Peak to B	ackground		
Std Error			or	Peak Cent			entroid	
Run #	FWHM	Avg	of Avg	1 keV	Avg	5 keV	Avg	(eV)
1	158.1	158.1	0.0	12738	12738	10677	10677	8035.5
2	159.4	158.7	0.9	12501	12620	11145	10911	8035.7
3	159.2	158.9	0.7	12099	12446	9552	10458	8035.6
4	159.9	159.1	0.8	12298	12409	10190	10391	8035.4
5	158.2	158.9	0.8	10895	12106	10500	10413	8035.6
6	157.5	158.7	0.9	13141	12279	10647	10452	8035.8
7	158.9	158.7	0.8	12425	12300	8952	10238	8035.4
8	159.3	158.8	0.8	13439	12442	9337	10125	8035.2
9	158.6	158.8	0.7	11524	12340	10074	10119	8036.1
10	159.4	158.8	0.7	11668	12273	8769	9984	8035.5
11	159.0	158.9	0.7	13830	12414	8909	9887	8035.7
12	159.4	158.9	0.7	10623	12265	10783	9961	8035.7
13	158.6	158.9	0.7	13186	12336	11512	10080	8036.1
14	158.9	158.9	0.6	12152	12323	11123	10155	8035.1
15	158.2	158.8	0.6	13116	12376	9837	10134	8035.7
Electronic Std Error (Peak Heig	Noise: of Noise: ht:	61.8 2.3 29042						

Gambar 3. Hasil Resolusi Test.

Pengujian selanjutnya adalah menguji kemampuan sistem spektroskopi dalam membedakan dua tingkat energi yang berdekatan (*Resolusi test*), nilai yang dihasilkan akan merepresentasikan lebar puncak energi pada setengah tinggi dari puncaknya atau sering disebut Full Width at Half Maximum (FWHM) ditunjukkan pada Gambar 3. Proses pengujian berjalan dengan kondisi yang memenuhi persyaratan mutlak pada tahap ini yaitu besarnya tegangan 18 kV, arus 0,02 mA, jenis filter Pd medium dan waktu operasi 45 detik disetiap perulangannya dengan puncak energi acuan Cu (tembaga) sebesar

8,041 keV. Adapun hasil yang diperoleh sebanyak 15 kali perulangan adalah rata – rata FWHM terbaik yang dicapai sebesar 158 eV dengan peak tertinggi 29042, akumulasi gangguan elektronik 61, 8 serta rata –rata puncak background pada tegangan 1 kev berkisar pada nilai 1200an hal ini sesuai dengan persyaratan nilai tegangan pada detektor SDD [2]. Terdapat perbedaan sistem pembacaaan resolusi antara jenis detektor PCD dan SDD yaitu jika pada PCD data rata – rata FWHM yang ada dibedakan menjadi 3 area berdasarkan besar kecilnya energi di area tersebut, sedangkan pada SDD data FWHM yang ada merupakan data pada area tengah (medium area), hal ini disebabkan dikarenakan sistem SDD sudah mengadopsi sistem *drift* sebagai penangkap sinar x tersebut.

Zirconium & Zircaloy (8,8mm)4 std - Standards Library	
File Standard Edit View Help	
	ALL STATES AND A REAL PROPERTY
Standard Name Modified Date No. Component Amount Unit	Certification
Standard Valine Hodines Date IVo Sn 1.8300 % Certified	State of the second
Z11 09/12/14 09: 18 Fe 0.2090 % Certified	
Z12 09/12/14 09: 18 Cr 0.0410 % Certified	
Z13 09/12/14 09: 18 Ni 0.0210 % 🖌 Certified	
Z14 09/12/14 09: 18 Hf 71.0000 ppm 🖵 Certified	
B 1.1000 ppm 🗨 Certified	
Cd 0.1000 ppm 🖵 Certified	
U 0.8000 ppm 🖵 Certified	
Cu 40.0000 ppm 🗨 Certified	
Co 6.0000 ppm 🚽 Certified	
Mn 5.0000 ppm 🖌 Certified	
Pb 12.0000 ppm 🛫 Certified	
AI 15.0000 ppm Certified	
Si 57.000 ppm Certified	
11 28.0000 ppm v Certified	
W 12.0000 ppm Centred	
7r 07.8731 % Difference	
* University A Difference	

Gambar 4. Standard library CRM JAEA

Tahap akhir dalam upgrade sistem detektor ini adalah melakukan pengujian menggunakan bahan standard yang menjadi ruang lingkup utama dalam penggunaannya di PTBBN – BATAN, yaitu menggunakan standar zirkonium sebagai acuan hasil analisis baik secara kualitatif maupun kuantitatif. Adapun tahapan yang dilakukan yaitu dengan *menginput* detail data komposisi unsur sesuai sertifikat standard CRM JAERI ke dalam "*standard library*" (gambar 4) kemudian disimpan dalam "*method explore*" dengan nama yang identik dengan pengujian bahan tersebut yang dalam hal ini dinamakan "*Zirconium method*", dari keempat sampel standar yang diuji yaitu sampel Z11, Z12, Z13 dan Z14 akan membentuk grafik acuan beberapa unsur penting selain zirkonium yaitu Fe (iron), Sn (tin), Cr (chromium), dan Ni (nickel) yang merupakan unsur acuan penyusun sampel standar tersebut.

Gambar 5. Spektrum kualitatif sampel standar

Pada tahap kualitatif tampak spektrum unsur yang dihasilkan dari sampel standar sesuai dengan nilai energinya (KeV) seperti ditampilkan pada gambar 5 yaitu unsur Zr (Kα 15,75), Fe (Kα 6,41), Sn (Kα 25,19), Cr(Kα 5,41), Ni (Kα 7,47) dan unsur lainnya yang nilainya relative kecil. Spektrum tersebut dihasilkan dari beberapa kondisi operasi (Low Za s/d High Zb) menyesuaikan dengan target yang ingin diidentifikasi dan menggunakan kolimator 8,8 mm sebagai luasan area analisis unsurnya.

Gambar 6. Grafik acuan unsur Sn & Kondisi operasi kuantitatif

Pada tahap kuantitatif keempat standar Zirkonium yang sudah di *running* sesuai dengan kondisinya akan menghasilkan grafik acuan, salah satunya grafik acuan unsur Sn (gambar 6) yang membentuk garis linear sebanyak 4 titik acuan nilai, yaitu antara pengukuran intensitas dan nilai konsentrasi di masing - masing standar yang hasilnya membentuk garis dengan $R^2 = 0,99997$ (mendekati 1) yang artinya persamaan garis ini dapat dijadikan acuan dengan pendekatan optimal untuk unsur Sn dari sample lain yang akan dianalisis besar nilai komposisinya. Adapun kondisi operasi yang digunakan untuk membentuk grafik acuan yaitu dengan mengoptimalkan semua filter (Al s/d Cu thin) yang ada pada alat XRF Arl-quant'X.

Zr3 Sample 2	200217 2			
Sn	1.494 %	0.032	729	22
Cd	0 %	0.0	0	9
Zr	98.37 %	0.25	133168	2977
Fe	0.13971 %	0.00073	350	-1
Cr	0.10030 %	0.0010	116	6
Ni	0.05805 %	0.00042	292	20
Mn	0.00074 %	0.00033	2	32
Co	0 %	0.0	0	46
Hf	0.0055 %	0.0017	8	46
Cu	[-0.00003] %	0.00082	8	48
w	[0.0020] %	0.0017	13	50
AI	0 %	0.0	0	1182
Si	0.0041 %	-0.0016	871	5736
Mo	0.00169 %	-0.00036	5293	-463
Ti	0 %	0.0	0	24
U	0.000092 %	0.000019	61	308
Pb	0 %	0.0	0	337

Gambar 7. Hasil analisis komposisi unsur sampel standar

Dari *report analisys* pada "*method explore zirconium*" didapat hasil akhir pengkuran komposisi sampel standar seperti tampak pada gambar 7 yang mana sampel Z13 menjadi salah satu contoh hasil kuantitatif dengan mengambil nilai rata rata 5 kali perulangan proses, *date time* operasi berkisar 30 % dengan *option vacumm* sebagai usaha dalam pendekatan unsur – unsur pada energi rendah dan batasan orde persen dalam setiap pembacaan nilai komposisinya.

IV. KESIMPULAN

Pembaharuan sistem deteksi sinar–x yang berasal dari alat XRF Arl-quant'x telah berhasil dilakukan yaitu dengan meng-*upgrade* dari sistem PCD (*Peltier Cooled Detector*) ke SDD (*Silicon Drift Detector*), parameter hasil diperoleh dari nilai selisih gain DAC yang relative kecil (7 poin dari batas max 100 poin) pada saat energy adjustment, nilai stabilitas report yang terbukti stabil (*ON SPEC*) dengan 50 kali perulangan proses, nilai resolusi (FWHM) rata-rata terbaik sebesar 158 eV, dan pengujian kualitatif dengan

hasil spektrum masing – masing unsur sesuai dengan besarnya energi (KeV) serta pengujian kuantitatif menggunakan standar Zirkonium CRM-JAEA dengan komposisi utama Zr = 98 %, Sn = 1,4 %, Cr = 0,1%, Ni = 0,05 % yang sudah sesuai dengan sertifikat standar tersebut.

DAFTAR PUSTAKA

- Rosika K, Dian A, Djoko K, Pengujian kemampuan xrf untuk analisis komposisi unsur paduan Zr-Sn-Cr-Fe-Ni, Prosiding seminar nasional sains dan teknologi nuklir PTNBR – BATAN Bandung,17–18 Juli 2007.
- **2.** Mitchell, I.V., Barfoot, K.M., Particles Induced X-Ray Emission Analysis Applications, Nuclear Science Applications an International Journal,1981.
- Shaul Barkan, Jan S. Iwanczyk, Bradley E.Patt, and friends, Vortex- a new performance silicon drift detector for XRD and XRF applications, International Center Data Advance in X-ray, volume 46.2003
- **4.** M. shanmugam, Y.B acharya, S.V. Vadawale, H.S. Mazumdar., Experimental characterization of silicon drift detector for X-ray spectrometry. Comparation with theoretical estimation. Measurement Journal. 2016.
- 5. P.Lechner, E. Eckbauer. et al. Nucl. Instr. Meth. A.377 (1996) 336.
- 6. R. Campana, G Zampa, et al. Nucl. Instr. Meth. A 633 (2011) 22.
- 7. A. Rashevsky, V. Bonvicini, et al . Nucl. Instr. Meth A 485 (2002) 54
- 8. <u>http://www.oxford-instruments.com/OxfordInstrument/media/nanoanalisys/ brochures</u> <u>%20</u>and%20thumbs/OI-AppNote-SDD-Explained.pdf.
- Streli, P. Wobrauschek, I. Schraik., Comparation Of SiLi detector and Drift Detector for the determination of low Z elements in total reflection X-ray fluorescence. Spectrochimica Acta Part B 59 (2004) 1211 – 1213.
- **10.** Quant'X Tehnical Manual, Rev A 269-173801, Thermo sciencetific Inc. all right reserved. 2015.