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ABSTRACT 

A STUDY ON PREPARATION AND HYDRIDING OF -Mg2Al3 AND -Mg17Al12. 

The mechanism of the synthetic formation of -Mg2Al3 and -Mg17Al12 has been studied. 

Mechanical alloying of Mg and Al powders with the atomic ratio of Mg:Al = 2:3 in 

toluene solution yields -Mg2Al3 compound after milling for 30 h. The -Mg17Al12 can be 

formed by heating the -Mg2Al3 at 430 C under high vacuum. The measured hydrogen 

capacities of -Mg2Al3 and -Mg17Al12 as hydrided at 300 C are 3.2 and 4.9 wt%, 

respectively. Microstructure of the Mg-Al specimen shows that on hydriding at 300 C the 

polygonal shape of the -Mg17Al12 changes into irregular shapes which are composed of 

-MgH2 and Al. 

 

FREE TERMS: mechanical Alloying, Mg-Al compounds, hydriding 

 

ABSTRAK 

STUDI PENYIAPAN DAN HIDRIDING -Mg2Al3 DAN -Mg17Al12. Mekanisme 

pembuatan -Mg2Al3 dan -Mg17Al12 telah dipelajari. Pemaduan mekanik serbuk Mg dan 

Al dengan perbandingan atomik Mg:Al = 2:3 dalam larutan toluena menghasilkan 

senyawa -Mg2Al3 setelah penggerusan selama 30 jam. -Mg17Al12 dapat terbentuk 

dengan pemanasan -Mg2Al3 pada suhu 430 C dalam vakum tinggi. Kapasitas hidrogen 

terukur dari -Mg2Al3 dan -Mg17Al12 terhidrisasi pada suhu 300 C adalah berturut-

turut 3,2 dan 4,9% berat. Mikrostruktur dari spesimen Mg-Al menunjukkan bahwa 

sewaktu hidriding pada suhu 300 C bentuk poligonal dari -Mg17Al12 berubah menjadi 

tak beraturan yang terdiri dari -MgH2 dan Al. 

 

KATA KUNCI: pemaduan mekanik, senyawa Mg-Al, hidriding 

 
I.  INTRODUCTION 

One promising alternative to fossil fuels is hydrogen. Through its reaction with 

oxygen, hydrogen releases energy explosively in heat engines or quietly in fuel cells. 

Hydrogen storage in the form of solid metal hydrides may make it possible to store 

larger quantities of hydrogen in smaller volumes at low pressure and at temperatures close to 

room temperature, compared to that in the form of gaseous storage in cylinders. It is also 

possible to achieve greater volumetric storage densities than liquid hydrogen because the 

hydrogen molecule is dissociated into atomic hydrogen within the metal hydride lattice 

structure. 

Magnesium and its derived alloys are looked upon as promising candidates of 

hydrogen storage material due to their high theoretical storage capacity (7.6 wt%), light weight 
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and low cost. However, they require high temperature over 300 C to show preferable 

hydrogen absorption and desorption properties because of the poor absorption/desorption 

kinetics. For practical application, it is necessary to improve the hydrogen reaction kinetics and 

lower the working temperature
[1-5]

. 

Synthetic alloying of the Mg2Ni compound using a high energy ball milling and 

hydriding the compound into Mg2NiH4 were achieved by the present authors
[6,7]

. Examination 

results indicate that approximately 96 wt% of the Mg2Ni compound can be obtained from the 

individual constituents after 30 hours of milling in toluene solution, which was used to protect 

the metals from oxidation. 

Following the success of the Mg2Ni preparation by mechanical alloying, its 

application to the Mg-Al system has been examined, here in regards to the formation of 

Mg2Al3 and Mg17Al12. Andreasen et al.
[8]

 prepared the Mg-Al alloys using an Edmund Buhler 

arc melting furnace. Their experimental results showed that Mg17Al12 compound can be 

produced from approximately 5 g mixture of magnesium and aluminum in stoichiometric 

atomic ratio. The Mg-Al alloys have attracted considerable attention since the alloys absorb 

hydrogen up to about 3.02 – 4.44 wt%. In the present study, a high energy mechanical alloying 

method is used instead of the arc melting to obtain the Mg2Al3 compound. Heat treatment of 

the -Mg2Al3 powder at 430 C under high vacuum has been conducted to convert the powder 

into -Mg17Al12. The mechanism of Mg2Al3 and Mg17Al12 formations during the mechanical 

alloying and heat treatment as well as their hydrogen absorption properties have been studied 

and are presented in this paper. 

 

II.  EXPERIMENTAL 

The milling experiment was performed using a SPEX 8000 type high energy ball mill 

(HEM) with the specifications as follows: 4500 rpm at normal blending speed, 90 minutes of 

running time, and 30 minutes of off time. The materials used in this experiment were 

magnesium powder (99.5% purity, metal basis, particle size  325 mesh or  44 m) and 

aluminum powder (99% purity, metal basis, particle size < 200 mesh or < 74 m). About 15 g 

of a mixture of Mg and Al powders with an atomic ratio of Mg:Al = 3:2 is milled with balls 

and then poured into a vial (dia. 51 mm and length 76 mm). The ball to specimen ratio by 

weight is 8:1 (ball dia. 12 mm). The milling was carried out for 10, 20, and 30 h each at room 

temperature under toluene solution. 

Qualitative and quantitative analyses were conducted with an X-ray diffractometer 

(XRD) of Philip type PW1710, using Cu as the anode tube and  = 1.5406 Å. Continuous 

scanning was conducted at 0.02° step size and 0.5 second/step. The scanning results are 

analyzed by using Rietveld method developed by Fuji Izumi
[9]

. Hydrogen absorption is 

conducted in a Sievert’s system that can be operated under high vacuum up to 110
-7

 mbar. 

About 2  3 g of -Mg2Al3 powder is put into the hydriding system and hydrided at 300 
o
C. To 

make -Mg17Al12, about 5 g of -Mg2Al3 powder was placed inside the hydriding system 

evacuated at high vacuum, and annealed at a temperature of 430 
o
C for 1 h. A small part of the 

annealed powder was then analyzed in the XRD and the rest was hydrided at a temperature of 

300 
o
C. The amount of hydrogen absorbed by the specimen was measured based on the 

alterations of pressure in the Sievert’s system. 
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III.  RESULTS AND DISCUSSION 

3.1.  Mechanism of the -Mg2Al3 Formation 

Figure 1 shows the XRD patterns of the Mg-Al specimen before milling and each 

after 10, 20 and 30 hours of milling. The XRD pattern before milling shows that the specimen 

consists of Mg and Al without traces of Mg-Al compound phases. After milling, the XRD 

patterns were changed, an indication that a new phase was formed. The XRD patterns show 

that the -Mg2Al3 phase grew to a considerable degree. Rietveld analyses also showed that the 

calculation results fit the experimental data, where the value of S (goodness of fit) is less than 

1.3 which is the maximum value permitted according to Izumi. The rates of conversion were 

approximately 72, 91 and 96 wt% of metal after 10, 20 and 30 hours of milling, respectively. 

The mechanism of the -Mg2Al3 formation has been attributed to mechanical processes as 

follows. During milling, the Mg and Al powders are periodically trapped among the steel balls 

that collide with each other resulting in the loss of crystalline state of metal powder, causing 

the transformation of metal to amorphous state and finally leading to plastic deformation. The 

Mg and Al powders will break into smaller particles which will stick together due to the cold 

welding to form a new compound. 
 

 

Figure 1. X-ray diffraction patterns of Mg:Al specimens before and 

after 10, 20 and 30 h of milling.  
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3.2.  Formation of -Mg17Al12 

Figure 2 shows the XRD pattern for -Mg2Al3 after heat treatment at 430 
o
C. It is 

shown that the specimen has transformed from -Mg2Al3 into -Mg17Al12. The highest peak for 

-phase can be identified at angle 2 equal to 36, corresponding to plane (411), followed by 

angle 40 at plane (332) and angle 65 at plane (721). The other crystal orientations identified 

at plane directions [h21], i.e. angle 31, 47 and 65 with the Miller indexes (321), (521) and 

(721), respectively, are suggested to be brought about due to milling and heating, though it 

should be proved later. The quantities of -Mg17Al12 and Al phases were estimated to be 61 

wt% and 39 wt%, respectively. 

Crivello et al. have also prepared the Mg-Al alloy with the atomic ratio of Mg:Al = 

1:1 by mechanical alloying under vacuum
 
using High Energy Nisshin Giken Super-Misuni 

NEV 8
[10]

. His experimental results showed that after 5 h of ball milling and 3 h of heating at 

100 C, the Mg-Al powders were converted to 24.7 wt% of the -phase and 75.3 wt% of the -

phase. 

In literature, Bouaricha et al. have also prepared the Mg-Al alloy using the SPEX 

8000, shaker type mill
[11]

, which differs from the present experiment. According to them, 

before milling the Al powder was leached to avoid contamination with oxygen. In addition, 

Bouaricha selected ball to powder ratio at 10:1. His experimental results at various Mg-Al 

compositions showed that most of the specimens were converted to -Mg17Al12, except for the 

specimen with the atomic ratio of Mg:Al = 37:63, where mostly -Mg2Al3 was formed. 

Unlike experiments by Andreasen et al., Crivello et al. and Bouaricha et al., the 

current experiment uses toluene, instead of argon, as the medium of milling. It is suggested that 

the presence of toluene avoids the overheat generation during milling process. Therefore, only 

-Mg2Al3 is formed. 

The - transformation can be expressed by the following reaction: 

    430 C 

17Mg2Al3     2Mg17Al12 + 27Al 

Theoretically, the mass fraction of the -phase is 67 wt%, assuming the atomic masses of Mg 

and Al are 24.21 g/mol and 26.98 g/mol, respectively. The current experiment yields -phase 

by as much as 61%, an indication that almost all the -phase has transformed into -phase. 

 
Figure 2. X-ray diffraction pattern of Mg:Al after 30 h of milling and 

heat treatment at 430 C.  
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3.3.  Hydriding of -Mg2Al3 and -Mg17Al12 

Figure 3 shows the results of hydriding -Mg2Al3 and -Mg17Al12 specimens. It is 

shown that the -phase absorbed hydrogen up to 3.2 wt% and that the -phase up to 4.9 wt%. 

The difference in the hydrogen capacity between these compounds can be understood to be due 

to the fact that -Mg2Al3 contains less magnesium than -Mg17Al12. These compounds have 

different plateau pressures, where the -Mg2Al3 phase has a higher pressure than the -

Mg17Al12 phase.  

Crivello et al. reported their experimental results that at the atomic ratios of Mg:Al = 

50:50 and 58.6:41.4, the maximum hydrogen absorption capacities were 3.5 and 3.7 wt% 

(equal to 0.92 and 0.97 H/M normalized) respectively at a hydriding temperature of 350 C
[10]

. 

In addition, they observed two sloping plateaux, an indication that the hydride formation was 

realized in a two-step process with the inflexion points at a relatively low pressure 

corresponding to 1.1 and 2.1 wt%. 

Bouaricha et al. obtained the values of [H/M]norm at a hydriding temperature of 400 C 

which were equal to 1.69 and 1.81 for the atomic ratios of Mg:Al = 75:25 and 58:42, 

respectively
[11]

. 

Compared to the Crivello et al. and Bouaricha et al.’s P-c-T diagrams, the present 

experiment presents higher plateau pressures, attributable to the fact that the experimental 

methods are different. Actually, Crivello et al. and Bouaricha et al. used higher pressures, 

while the current experiment was done at lower pressures. 
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Figure 3.  P-c-T isotherms at 300 C for hydriding -Mg2Al3 and -Mg17Al12. 

 

Figure 4 shows the hydriding rates of both the -Mg2Al3 and -Mg17Al12 phases at  

300 C. The two curves show almost similar absorption lines before inflected at 3.15 wt% and 

4.38 wt% for the -Mg2Al3 and -Mg17Al12 phases, respectively. The figure indicates that the 

specimens absorbed hydrogen very fast at the beginning before suddenly inflected into slow 

rates. The sharp inflexion occurred after approximately 170 seconds. Andreasen et al. reported 

that complete hydriding spent time for approximately 17 h with the total hydrogen uptake of 
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approximately 3.1 wt%
[8]

. Meanwhile, no information was reported about the hydriding rates 

by Crivello et al. and Bouaricha et al. 
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Figure 4. Hydriding rates of the -Mg2Al3 and -Mg17Al12 phases at 300 C 

 

3.4.  XRD of the Hydriding Results 

Figure 5 indicates the XRD pattern of -Mg17Al12 specimen hydrided at 300 C. 

Referring to Figure 2 and 5, the mass fractions of -Mg17Al12 and -MgH2 are evaluated to be 

61 wt% and 39 wt%, respectively. The chemical reaction for the hydriding process of -

Mg17Al12 can be described as follows: 

Mg17Al12 + 17H2    17MgH2 + 12Al 

 

Meanwhile, by taking into account the XRD pattern in Figure 2, the equation to 

describe the actual chemical reaction that occurred in the specimen is as follows: 

2Mg17Al12 + 27Al + 34H2  17MgH12 + 51Al 

 

The theoretical mass yield of -MgH2 is 40 wt%, taking the atomic mass of H to be 

1.0 g/mol, while the present result is 39 wt% or the hydrogen absorbed is about 3 wt%. 

Compared to the hydrogen capacities presented in the P-c-T diagram in Figure 3, i.e. 3.2 wt% 

for the -Mg2Al3 phase and 4.9 wt% for -Mg17Al12, the calculation result is too low. It is 

probably due to the fact that not all the -Mg2Al3 specimen was converted to -Mg17Al12. 
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Figure 5. X-ray diffraction patterns of -Mg17Al12 hydrided at 300 C. The 

-Mg17Al12 is transformed to -MgH2 and Al phases. 

 

3.5.  Microstructures of the Mg-Al Specimens 

Microstructures of the specimens have been analyzed using a scanning electron 

microscope (SEM). Figure 6 shows the microstructure of (a) the -Mg2Al3 after 30 h of 

milling, together with those of (b) Bouaricha et al.
[11]

 and (c) Crivello et al.
[10]

. The 

microstructure analyses show that the particle shapes are polygonal
[12]

 with the varied particle 

sizes of 2  7 m distributed homogeneously on the surface of the specimens. Compared to the 

particles of Bouaricha et al. and Crivello et al., the present microstructure shows more uniform 

but larger particle sizes with polygonal structures. 

Figure 7 shows the SEM photograph for the hydrided Mg-Al specimen. The change in 

the shape from polygonal to irregular indicates that the new phase -MgH2 has been formed. 

 

             
 

 

 

 

 

 

(a) (b) 



 

ISSN 1907–2635 
82/Akred-LIPI/P2MBI/5/2007 

A Study on Preparation and Hydriding Of 

-Mg2Al3 And -Mg17Al12  
 (Hadi Suwarno) 

 

 101 

 

 
 

 
Figure 6. SEM photographs: (a) the Mg-Al specimen after 30 h milling of 

this study, (b) Bouaricha et al.[11], and (c) Crivello et al 
 

 

Figure 7. SEM photograph of the Mg-Al specimen after hydriding 

 
IV.  CONCLUSION 

Syntheses of -Mg2Al3 and -Mg17Al12 have been carried out by means of mechanical 

alloying under toluene and then heat treatment, respectively. Their hydriding properties have 

been investigated. Almost all the Mg-Al powders can be synthesized into -Mg2Al3 phase after 

milling for 30 h. The -Mg17Al12 phase can be obtained by heating the -Mg2Al3 phase at 430 

C for 1 h under high vacuum. Surface morphology of the specimen was examined with SEM 

to reveal that the synthesized particles have a polygonal shape similar to the observation made 

by other researchers who used slightly different mehods. Hydrogen capacities of the -Mg2Al3 

and -Mg17Al12 phases at 300
 o
C are 3.2 wt% and 4.9 wt%, respectively.  
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