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ABSTRACT 

 THERMAL DECOMPOSITION KINETICS OF LANTHANUM OXALATE HYDRATE PRODUCT 

TREATMENT FROM MONAZITE. Unreacted shrinking core model variation was developed for calcination and solid 

thermal decomposition reaction to non-catalytic gas and no gas reactants were involved. In this research, thermal decomposition 

of lanthanum oxalate hydrate product treatment of monazite was studied. The parameters for modeling are time and temperature 

of thermal decomposition. The time was between 0 - 150 minutes with 30 minutes intervals and the temperature range between 

600 – 700 oC with 100 oC intervals. Based on the experimental data it can be concluded that the most suitable model was 

unreacted core sphere ash diffusion controls and obtained the relation between temperature 𝑇 oC with diffusion coefficient 𝐷 

following equation 𝐷 = 0.0011 𝑇 + 0.5175 with linearity R² = 0.9561. Another possible model was the sphere reaction control 

and obtained the relationship between 1/𝑇 (K) and reaction rate constant 𝑘𝑠 was 𝑘𝑠 = 48873.e -4.88 / 𝑅𝑇 with activation energy 

= 4.88 kJ. The relationship between time t with 𝑟𝑐 (radius of particles at time t) at various temperatures and the relation between 

temperature and 𝑟𝑐 at various times follows the exponential line equation. If temperature and time parameters were combined, 

the relation between time and temperature with 𝑟𝑐 following the equation ln 𝑟𝑐 = -0.9536 (9E-04𝑇 + 0.005𝑡) + 4.9976 will be 

found. 

 

Keywords: kinetics, thermal decomposition, lanthanum oxalate hydrate 

 

ABSTRACT 

DEKOMPOSISI TERMAL KINETIK PADA LANTHANUM OXALATE HYDRATE HASIL PERLAKUAN 

DARI MONAZITE. Variasi model inti dari penyusutan yang tidak bereaksi telah dikembangkan untuk kalsinasi dan reaksi 

posisi dekomposisi termal pada gas non katalitik dan tidak ada reaktan gas yang terlibat. Dalam penelitian ini, dekomposisi 

termal perlakuan produk hidrat lantanum oksalat monasit telah dilakukan. Parameter untuk pemodelan adalah waktu dan suhu 

dekomposisi termal. Waktu antara 0 - 150 menit dengan interval 30 menit dan kisaran suhu antara 600 - 700 oC dengan interval 

100 oC. Berdasarkan data eksperimen dapat disimpulkan bahwa model yang paling cocok adalah kontrol difusi inti bola yang 

tidak bereaksi dan diperoleh hubungan antara suhu 𝑇 oC dengan koefisien difusi 𝐷 berikut persamaan 𝐷 = 0,0011𝑇 + 0,5175 

dengan linearitas R² = 0,9561. Model lain yang memungkinkan untuk dilakukan adalah kontrol reaksi bola dan memperoleh 

hubungan antara 1/𝑇 (K) dan konstanta laju reaksi 𝑘𝑠 adalah 𝑘𝑠 = 48873e -4,88/𝑅𝑇 dengan energi aktivasi = 4,88 kJ. Hubungan 

antara waktu 𝑡 dengan 𝑟𝑐 (jari-jari partikel pada waktu 𝑡) pada berbagai suhu dan hubungan antara suhu dan 𝑟𝑐 pada berbagai 

waktu mengikuti persamaan garis eksponensial. Jika parameter suhu dan waktu digabungkan akan menemukan hubungan an-

tara waktu dan suhu dengan 𝑟𝑐 mengikuti persamaan ln 𝑟𝑐 = -0,9536 (9E-04 𝑇 + 0,005 𝑡) + 4,9976. 

 

Kata kunci: kinetik, dekomposisi termal, lanthanum oxalate hydrate 

 

 

INTRODUCTION 
Sustainable technological development is 

strongly dependent on new materials with particular 

mechanical, chemical, electrical, magnetic, or optical 

properties. In order to address this challenge, interdis-

ciplinary research technologies, to develop new mate-

rials, especially inorganic materials, to impart new 

functional properties and to provide new processing 

methods for the formation of useful objects are under 

intense focus [1,2].   Within the class of inorganic ma-

terials, oxides perform various functions [3]. The oxide 

ceramics are well known materials for technical appli-

cations, particularly in electronic and structural areas. 
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The purity of these materials is extremely important. In 

the oxide class, lanthanum oxide (La2O3) is one of the 

most widely studied over the years. Lanthanum oxide 

has been widely applied to many industrial applica-

tions. For example, it is an important component of au-

tomobile exhaust-gas conversion [4], as a catalyst sup-

port in the formation of gas conversion catalyst [5] and 

as a catalyst of oxidative coupling of methane [6]. It is 

also used as a refractory oxide for calcium lights, opti-

cal glass [7] and in the formation of ceramics as a core 

for carbon arc electrodes and lanthanum oxide is also 

used as a raw material for radar absorption (RAM) [8]. 

However, as the raw material in these fields, synthesis 

of lanthanum oxide with good quality is very important 

[9].  

The rare earth oxide can be prepared by oxa-

late thermal decomposition, but its characteristics on a 

great degree depend upon the calcining conditions. 

Thus, monitoring the process of oxalate thermal de-

composition is an important issue [9]. Balboul et al [5] 

had reported that the characteristic of thermal decom-

position of lanthanum oxalate decahydrate La2(C2O4)• 

10H2O to the onset of La2O3 could be measured by ther-

mogravimetry (TG) and different thermal analysis 

(DTA). The characteristics of the lanthanum oxalate 

decahydrate and the activation energy of the observed 

thermal processes were obtained by means of IR-

spectroscopy, X-ray diffractometer, but kinetic of ther-

mal analysis of various compounds is of major im-

portance because of their frequent applications in calci-

nation metallurgy and in the production of sorbents and 

catalysts with large-surface materials [10]. Unfortu-

nately, most literatures rested on the understanding of 

the activation energy of the thermal processes and few 

people paid attention to the kinetics and the most prob-

able model of thermal decomposition. Compared with 

other methods, thermal decomposition process has 

many advantages, such as more effective control of size 

and shape of the particle, shorter preparation time and 

fewer impurities in the final product [11,12]. Thermal 

decomposition methods were preferably used to pre-

pare the nanostructure ceramic materials [13,14]. In the 

future, the exploitation of such lanthanide oxide archi-

tectures by thermal decomposition may provide an op-

portunity of producing innovative ceramic materials 

with novel and tunable magnetic, electronic, or 

catalytic properties [15]. At present, the ultra-fine 

La2O3 powder can be prepared by solid phase, hydro-

thermal synthesis, precipitation, sol-gel and micro-

emulsion methods. Among these methods, precipita-

tion method is used widely for its simplicity. High and 

uniform super-saturation is the key factor to affect the 

size of the “ultra fine” solid particles in precipitation. 

In order to obtain the high and uniform super-satura-

tion, a kind of new reactor, submerged circulative im-

pinging stream reactor (SCISR), was developed [16].  

In this work, La2(C2O4)3•10H2O was prepared 

from monazite sand. The thermal decomposition of 

La2(C2O4)3•10H2O was conducted from 600 °C to 1000 

°C in furnace. The intermediate product and the final 

solid product are analyzed by X-ray fluorescence 

(XRF) and X-ray diffractometer (XRD).  

Kinetic decomposition was studied by apply-

ing unreacted shrinking core model [17]. The influence 

of different temperature regions upon the thermal be-

havior of chemical compounds can provide kinetic pa-

rameters indicating change in the reaction pathway. 

The complexity of a stage can be expressed from the 

activation energy (𝐸) dependent on the extent of con-

version (𝛼). The activation energy can be obtained by 

isoconversional method. If 𝐸 does not depend on α, the 

investigated process is a simple one and should be de-

scribed by a unique kinetic triplet. Otherwise, the pro-

cess will be complex. In this work integral isoconver-

sional methods were used to analyze the non-isother-

mal kinetics of the lanthanum oxalate. The extent of 

conversion, 𝛼, is defined by the following equation 

[18]: 

𝛼 =  (𝑚0 − 𝑚)/(𝑚0 − 𝑚𝑓) (1)  

Where 𝑚 is the mass of the sample at a given time 𝑡; 

𝑚0 and 𝑚𝑓 refer to masses at the beginning and the end. 

The stages of reaction that occurred [19,20]: 

La2(C2O4)3 • 10H2O → La2(C2O4)3 + 10H2O (2) 

3La2(C2O4)3 → La2O2CO3 + 3CO + 2CO2  (3) 

La2O2CO3 → La2O3 + CO2 (4) 

The description and development of solid particle reac-

tion including intermediate formation has been studied 

before [21]. The mechanism and mathematical models 

of thermal decomposition also been studied with the 

summary as attached in Table 1 [22].  

 

Table 1. The mechanisms occurring and mathematical models of thermal decomposition [22] 
 Mechanisms Mathematical models 

Constant size particle 

Sphere Sphere Film Diffusion Controls 𝛼 =  
 3𝑏𝑘𝑠

𝜌𝐵𝑅
 𝑡                                        (5) 

Sphere Ash Diffusion Controls 1 − 3(1 − 𝛼)
2

3 − 2(1 − 𝛼) =  
 6𝑏𝐷

𝜌𝐵𝑅2
 𝑡(6) 

Sphere Reaction Controls 1-(1-α)1/3 = 
 𝑏𝑘𝑠

𝜌𝐵𝑅
 𝑡                                (7)     

Cylinder Cylinder Film Diffusion Controls 𝛼 =  
 2𝑏𝑘𝑠

𝜌𝐵𝑅
 𝑡                                         (8) 

Cylinder Ash Diffusion Controls α +(1- α)ln(1- α)= 
4𝑏𝐷

𝜌𝐵𝑅2
𝑡                    (9)                 

Cylinder Reaction Controls 1-(1-α)1/2= 
𝑏𝑘𝑠

𝜌𝐵𝑅
𝑡                                (10) 

Shrinking sphere 

Small particle Small Particle Film Diffusion Controls 1-(1- α)2/3 = 
2𝑏.𝐷

𝜌.𝑦.𝑟0
2 𝑡                          (11)        
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 Mechanisms Mathematical models 

Constant size particle 

Stokes Regime Small Particle Ash Diffusion Controls  Not applicable 

Small Particle Reaction Controls 1- (1-α)1/3 = 
𝑏𝑘𝑠

𝜌𝐵.𝑅0
𝑡                            (12)            

where: 

𝑘  = surface reaction rate constant (mol−n m3n+1/s) 

𝑏 = stoichiometric factor 

𝜌𝐵 = particle density, g/mL  

𝑡  = heating time, minutes,  

𝐷  = diffusion constant, g/cm2 or mole/cm2 

𝑅0 = the radius of the initial particle (initial radius) at time = 0 

 

If the mechanism was controlled by the rate of 

reaction, the relationship between the rate coefficient 

and 1/𝑇 obeys the Arrhenius equation [23]: 

𝑘 = 𝑘0𝑒−𝐸/𝑅𝑇  (13) 

𝑘 = surface reaction rate constant (mol−n m3n+1/s) 

𝑘0 = Arrhenius pre-exponential coefficient  

𝐸 = activation energy, kJ 

𝐴  = frequency factor 

 

EXPERIMENTAL METHOD 
Materials 

The material used was Lanthanum oxalate 

product treatment of monasite sand. 

Equipment 

Glassware, scales, oven, high temperature 

furnace 1500 oC, X-ray fluoresence (XRF) were used 

as the equipment. 

Methods 

Solids of La2C2O3.10.H2O was weighed as 

much as 5 grams and heated at a temperature of 600˚C 

in a high temperature furnace for various time, e.g. 30, 

60, 120 and 150 minutes. After cooling, obtained solid 

were reweighed. The procedure was repeated for vari-

ous temperature, those are 700 ˚C, 800 ˚C, 900 ˚C and 

1000 ˚C. Analysis of lanthanum oxalate composition 

and thermal decomposition results using XRF. 

 

RESULTS AND DISCCUSIONS  
Analysis of Lanthanum Oxalate Composition  

The composition analysis or element content 

(%) using XRF were presented in Table 2. Apparently 

La oxalate still contains cerium oxalate. 
 

Table 2. The content or composition of the oxalate compound 

Compound Content (%) 

La2(C2O4)3•10 H2O 92.87 

Ce2(C2O4)3 2.91 

Water 4.22 

 

Effect of decomposition time on weight, fraction and 

conversion of solid weight at various temperatures 

The weight conversion calculation uses the 

following formula (equation 1). Where 𝛼 is (𝑚0 − 𝑚) / 

(𝑚0 − 𝑚𝑓) which 𝑚0 is the initial mass (5 g) and 𝑚𝑓 is 

the final mass (2.17 g, when it has turned into La 

oxide). 

The effects of increasing time and temperature 

of heating, there will be a reduction in weight and 

weight fraction, but the weight conversion of 𝛼 is 

greater [24,25]. At first heating the free water will 

evaporate, then the crystal water decomposes (stage I). 

If the heating continues and the temperature was higher, 

there will be decomposition phase II that was formed 

La oxycarbonate and finally  decomposition phase III 

was occur that was formed La oxide. The relationship 

between heating time with weight, weight fraction and 

weight conversion 𝛼 at various temperatures were 

presented in Figure 1a, Figure 1b and Figure 1c.

 

 
Figure 1a. The relationship between 
heating time and weight after heat-

ing at various temperatures 

 
Figure 1b. The relationship between 

heating time and weight fraction after 

heating at various temperatures 

 
Figure 1c. The relationship between 
heating time and conversion after heat-

ing at various temperatures 
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Table 3. The equation of the relationship between t and f (α) at various temperatures for sphere film diffusion controls, sphere 

ash diffusion controls, sphere reaction controls 

Temperatures, oC Sphere Film  

Diffusion Controls 
Sphere Ash Diffusion  

Controls 

Sphere Reaction  

Controls 

600 𝑦600  =  0.005𝑥 +  0.2231  𝑦600  =  0.003𝑥 +  0.0287 𝑦600  =  0.0029𝑥 +  0.0825 
700 𝑦700  =  0.005𝑥 +  0.2311 𝑦700  =  0.0031𝑥 +  0.031 𝑦700  =  0.0029𝑥 +  0.0857 
800 𝑦800  =  0.0052𝑥 +  0.2411 𝑦800  =  0.0035𝑥 +  0.0272 𝑦800  =  0.0032𝑥 +  0.086 
900 𝑦900  =  0.0054𝑥 +  0.2486 𝑦900 =  0.0039𝑥 +  0.095 𝑦900  =  0.0034𝑥 +  0.1401 

1000 𝑦1000 =  0.0054𝑥 +  0.3243 𝑦1000  =  0.004𝑥 +  0.0262 𝑦1000  =  0.0035𝑥 +  0.0867 
Notes 𝑦 =  𝑓(𝛼)  =  𝛼 

x = t = temperatures 
𝑦 = 𝑓(𝛼) = 1 − 3(1 − 𝛼)

2

3 − 2(1 − 𝛼)
 

 x = t =temperatures 

𝑦 =  𝑓(𝛼)  =  1 − (1 − 𝛼)1/3 

x = t =temperatures 

Determination of Mechanisms and Mathematical 

Model  

The calculation of conversion values can be 

arranged model of shrinking particle both the constant 

size particle with the sphere and the cylinder shape, as 

well as shrinking sphere particles. The equation of the 

relationship between time (𝑡) with f (𝛼) for sphere film 

diffusion controls, sphere ash diffusion controls, sphere 

reaction controls shown in Table 3. 

The relation between time (𝑡) and the weight 

conversion equation 𝛼 = 𝑓(𝛼) for the constant size par-

ticle of the spherical shape were shown in Figure 2a, 

Figure 2b and Figure 2c. The function 𝛼 = 𝑓 (𝛼) for 

each model according to equations (5), (6) and (7). 

Preparation of the relationship between t with 𝑓(𝛼), 

was very important in order to select the model of math-

ematical equations that describe events that occur and 

that control. 

The equation of the relationship between time 

(𝑡) and 𝑓(𝛼) for cylinder film diffusion controls, cylin-

der ash diffusion controls and cylinder reaction controls 

are shown in Table 4a. 

While, the equations line linearity (R²) of the 

relationship between time (𝑡) and 𝑓(𝛼) for the cylinder 

film diffusion controls, cylinder ash diffusion controls 

and cylinder reaction controls were shown in Table 4b. 

The relationships between time and the weight conver-

sion equation 𝛼 = 𝑓(𝛼) for the Shrinking Sphere parti-

cle are shown in Figure 4a and Figure 4b. The function 

𝛼 = 𝑓(𝛼) for each model is according to equations (11) 

and (12). 

The equations of the relationship between 

time (𝑡) and 𝑓(𝛼) for small particle film diffusion con-

trols and small particle reaction controls were shown in 

Table 5a. 

 

Table 4a. The equation of the relationship between 𝑡 and 𝑓(𝛼) at various temperatures for cylinder film diffusion controls, cylinder ash diffu-

sion controls and cylinder reaction controls 

Temperature, 0C Cylinder Film Diffusion Controls 
Cylinder Ash Diffusion 

Controls 
Cylinder 

Reaction Controls 

600 𝑦600  =  0.005𝑥 +  0.2231 𝑦600  =  0.0037𝑥 +  0.0462 𝑦600 =  0.0037𝑥 +  0.1216 

700 𝑦700  =  0.005𝑥 +  0.2311 𝑦700  =  0.0038𝑥 +  0.05 𝑦700 =  0.0038𝑥 +  0.1264 

800 𝑦800  =  0.0052𝑥 +  0.2411 𝑦800  =  0.0042𝑥 +  0.0489 𝑦800  =  0.0041𝑥 +  0.1291 

900 𝑦900  =  0.0054𝑥 +  0.2486 𝑦900  =  0.0047𝑥 +  0.0506 𝑦900  =  0.0044𝑥 +  0.1318 

1000 𝑦1000 =  0.0054𝑥 +  0.3243 𝑦1000  =  0.0045𝑥 +  0.1354 𝑦1000 =  0.0042𝑥 +  0.1983 

Notes 
𝑦 =  𝑓(𝛼)  =  𝛼 

x = t = temperature 
𝑦 = 𝑓(𝛼) = 𝛼 + (1 −  𝛼)ln(1 −  𝛼) 

x = t =temperature 
𝑦 = 𝑓(𝛼) = 1 − (1 − 𝛼)1/2 

x = t =temperature 

 
Figure 2a. The relationship time with 

α, at various temperatures (Cylinder 
Film diffusion control) 

 
Figure 2b. The relationship time with 

𝛼 + (1 −  𝛼) ln(1 −  𝛼), at various 

temperatures (Cylinder Ash diffusion 
control) 

 
Figure 2c. The relationship time with 

1 − (1 − 𝛼)1/2, at various tempera-

tures (Cylinder Reaction control) 
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Table 4b. The equations line linearity (R²) the relationship between 𝑓(𝛼) and 𝑡 at various temperatures for cylinder film 

diffusion controls. Cylinder ash diffusion controls and cylinder reaction controls 

Temperature oC Cylinder Film Diffusion Controls Cylinder Ash Diffusion Controls Cylinder Reaction Controls 

600 R² = 0.7691 R² = 0.9184 R² = 0.8433 

700 R² = 0.7626 R² = 0.9303 R² = 0.8451 
800 R² = 0.7668 R² = 0.9651 R² = 0.8705 

900 R² = 0.7674 R² = 0.9614 R² = 0.879 

1000 R² = 0.6399 R² = 0.8751 R² = 0.762 

 
Figure 4a. The relationship between time with 

1 − (1 −  𝛼)2/3 at various temperatures (small 

particle film diffusion controls) 

 
Figure 4b. The relationship between time with 1 −
(1 − 𝛼)1/3 at various temperatures (small particle re-

action control) 

Temperature.0C Small particle film diffusion control  Small particle Reaction control  

600 𝑦600  =  0.0021𝑥 +  0.0554 𝑦600  =  0.0029𝑥 +  0.0825 

700 𝑦700  =  0.0022𝑥 +  0.0575 𝑦700  =  0.0029𝑥 +  0.0857 

800 𝑦800 =  0.0024𝑥 +  0.0566 𝑦800  =  0.0032𝑥 +  0.086 

900 𝑦900 =  0.0027𝑥 +  0.0563 𝑦900  =  0.0035𝑥 +  0.0867 

1000 𝑦1000  =  0.0026𝑥 +  0.0967 𝑦1000  =  0.0034𝑥 +  0.1401 

Notes 𝑦 = 𝑓(𝛼)  =  1 − (1 −  𝛼)2/3  

x = t = temperature 

𝑦 =  𝑓(𝛼)  =  1 − (1 − 𝛼)1/3 

x = t = temperature 

. 

Temperature oC Small particle film 
diffusion control 

Small particle 
Reaction control 

600 R² = 0.878 R² = 0.8649 

700 R² = 0.8848 R² = 0.8697 

800 R² = 0.9208 R² = 0.9018 
900 R² = 0.9311 R² = 0.9117 

1000 R² = 0.8341 R² = 0.8057 

   

The equations line linearity (R²) of the rela-

tionship between time (𝑡) with 𝑓(𝛼) for the small par-

ticle film diffusion controls and small particle reaction 

controls were shown in Table 5b. 

The equations of the relationship between 

time (𝑡) and 𝑓(𝛼) for small particle film diffusion con-

trols and small particle reaction controls were shown in 

Table 5a. 

To determine the value of the diffusivity (𝐷) 

use the formula 𝑓(𝛼) =  
 6𝑏𝐷

𝜌𝐵𝑅2  𝑡 for  the sphere ash 

diffusion control equation and to determine the 

activation energy use the formula 𝑓(𝛼) =  
 𝑏𝑘𝑠

𝜌𝐵𝑅
 𝑡 for 

sphere reaction control. The relationship between 

temperature ˚C (T) and D is presented in Figure 5a and 

the relationship between 1/𝑇 (T˚K) and ln 𝑘𝑠 (𝑘𝑠= 

constant reaction rate) is shown in Figure 5b. 

 

Sphere Ash Diffusion Controls 

𝑆𝑙𝑜𝑝𝑒 =  
6𝑏𝐷

𝜌𝐵𝑅2    (14) 

with 𝑅 = 0.0074 cm, 𝜌𝐵 = 1.5 g/cm3, 𝐷 = molecular 

diffusion coefficient cm2/sec, and 𝑏 = Coefficient of 

La2(C2O4)3 reaction. 

Table 5a. The equation of the relationship between 𝑡 and 𝑓(𝛼) at various temperatures for 

small particle film diffusion controls and small particle reaction controls. 
 

Table 5b. The equations line linearity (R²) the relationship between 𝑓(𝛼) and 𝑡 at various 

temperatures for small particle film diffusion controls and small particle reaction controls 
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Sphere Reaction Controls  

𝑆𝑙𝑜𝑝𝑒 =  
 𝑏𝑘𝑠

𝜌𝐵𝑅
 𝑡                                              (15) 

With 𝑅 = 0.0074 cm, 𝜌𝐵= 1.5 g/cm3, 𝑏 = Coefficient of 

La2(C2O4)3 reaction, and 𝑘𝑠= reaction rate constant. 

 

The relationship between 𝑇 and 𝐷 follows the 

equation  

𝐷 =  0.0011 𝑇 +  0.5175   (16) 

with R² = 0.9561. The relationship between 1/𝑇 and 

ln 𝑘𝑠 follows the equation, 

ln 𝑘𝑠 =  − 586.86/𝑇 +  10.797   (17) 

with  R² = 0.9115, 𝐸/𝑅  = 586.86, 𝑅= ideal gas law 

constant = 8.314 J/gmol, 𝐸 = activation energy = 

4879.43 J = 4.88 kJ, ln 𝐴 = 10.797 and 𝐴= 48873. 

The relationship equation between  𝑘𝑠 with 𝑇 

becomes 

𝑘𝑠  =  48873𝑒–4.88/𝑅𝑇    (18) 

The shrinking of particle size on Sphere Ash Diffusion 

Controls can be calculated by the formula: 

𝛼 = 1 − (𝑟𝑐/𝑅)3    (19) 

With 𝑟𝑐  = radius of unreacted core at time 𝑡 (µm) and 

𝑅 = initial radius of particle= 74 µm.  

 

 
Figure 5a. The relationship between temperature (𝑇) and 𝐷 

 

 
Figure 5b. The relationship between 1/𝑇 and 𝑘𝑠 

 

The relationship between time t and 𝑟𝑐  at vari-

ous temperatures is shown in Figure 6a and the relation-

ship between temperature oC and 𝑟𝑐  at various times is 

shown in Figure 6b. The equation of the relationship 

between time 𝑡 and 𝑟𝑐  at various temperatures is shown 

in Table 6a and the relationship between temperature 
oC and 𝑟𝑐  at various times are shown in Table 6b.  They 

follow exponential equations. 

 

 
Figure 6a. The relationship 

between time 𝑡 and 𝑟𝑐  at vari-

ous temperatures (Sphere Ash 

Diffusion Controls) 

 

 
Figure 6b. The relationship be-

tween temperature oC and 𝑟𝑐  at 

various times (Sphere Ash Diffu-
sion Controls) 

Table 6a.  The equations of relationship between time 𝑡 and 𝑟𝑐 at var-

ious temperatures 

Tempera-

ture.oC 

Equation Linearity (R²) 

600 𝑦600 =  68.12𝑒−0.004𝑡 R² = 0.9005 

700 𝑦700  =  67.925𝑒−0.004𝑡 R² = 0.9112 

800 𝑦800  =  68.343𝑒−0.005𝑡 R² = 0.9529 

900 𝑦900  =  68.663𝑒−0.005𝑡 R² = 0.9624 

1000 𝑦1000 =  63.532𝑒−0.005𝑡 R² = 0.8864 

 

Table 6b. The equations of the relationship between temperature oC 

(𝑇) and 𝑟𝑐 at various times 

Time. 

minutes 

Equation Linearity (R²) 

30 𝑦30  =  74.334𝑒−4𝐸−04𝑇 R² = 0.9418 

60 𝑦60  =  73.205𝑒−5𝐸−04 𝑇 R² = 0.9668 

90 𝑦90 =  71.502𝑒−7𝐸−04𝑇 R² = 0.9595 

120 𝑦120  =  70.212𝑒−7𝐸−04𝑇 R² = 0.9162 

150 𝑦150  =  72.414𝑒−9𝐸−04𝑇 R² = 0.9879 

 

The integration equation of relationship be-

tween time with 𝑟𝑐  at optimum temperature (1000 oC) 

and equation of relationship between temperature with 

𝑟𝑐  at optimum time (150 minutes) as follows: 

𝑟𝑐  = 63.532𝑒−0.005𝑡. 72.414𝑒−9𝐸−04𝑇  (20) 

To make into a linear relationship 

𝑙𝑛 𝑟𝑐 = −𝑏(0.005𝑡 + 9𝐸 − 04 𝑇) + 𝑎 (21) 

The graph of relationship between 0.005𝑡 + 9𝐸 −
04 𝑇 and ln 𝑟𝑐  is shown in Figure 7. 

Figure 7. The relationship between 0.005t + 9E-04 T  and ln 𝑟𝑐  

 

The relationship between 𝑇 and 𝑡 with  𝑟𝑐  become:   

ln 𝑟𝑐 =-0.9536 (9E-04T + 0.005t) + 4.9976 (22) 
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At heating of 1000 oC for 150 minutes, the result of 

composition of solids based on XRF data after decom-

position is shown in Table 7. 

 
Table 7. The Content or Composition of The Lanthanum Compound 
After Decomposition 

Compound Content (%) 

La2O2CO3 76.57 

La2O3 17.70 

Ce2(C2O4)3 5.00 
Ce2O2CO3 0.73 

 

CONCLUSION 
The parameters used for modeling were time 

and temperature of thermal decomposition. Time range 

were 0 - 150 minutes with a 30 minutes interval and the 

temperatures range between 600oC – 700oC with 100oC 

intervals. From the experimental data, it can be con-

cluded that the most suitable model is unreacted core 

Sphere Ash Diffusion Controls and obtained the rela-

tionship between temperature 𝑇 oC with diffusion coef-

ficient D follow equation 𝐷 = 0.0011𝑇 + 0.5175 with 

linearity R² = 0.9561. Another possible model is the 

sphere reaction control and the relationship between 

1/T (K) and reaction rate constant 𝑘𝑠 follow 𝑘𝑠 = 

48873e- 4.88/RT with activation energy = 4.88 kJ. The re-

lationship between time 𝑡 and 𝑟𝑐  (radius of particles at 

time 𝑡) at various temperatures and the relation between 

temperature and 𝑟𝑐  at various times follows the expo-

nential line equation. If both temperature and time pa-

rameters are combined the relation between time and 

temperature T with 𝑟𝑐  will be found as the following 

equation ln 𝑟𝑐  = -0.9536 (9E-04T + 0.005t) + 4.9976. 
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