KARAKTERISASI UKURAN KRISTALIT, REGANGAN MIKRO DAN KEKUATAN LULUH Zr1%Sn1%Nb1%Fe DENGAN DIFRAKSI SINAR-X

Sugondo dan Futichah

Pusat Pengembangan Teknologi Bahan Bakar Nuklir dan Daur Ulang(P2TBDU) - BATAN Kawasan Puspiptek, Serpong 15314, Tangerang

ABSTRAK

KARAKTERISASI UKURAN KRISTALIT, REGANGAN MIKRO DAN KEKUATAN LULUH Zr1%Sn1%Nb1%Fe DENGAN DIFRAKSI SINAR-X. Telah dilakukan karakterisasi ukuran kristalit, regangan mikro dan kekuatan luluh paduan Zr-1%Sn-1%Nb-1%Fe dengan metode difraksi sinar-X. Sintesis paduan menggunakan teknik peleburan. Sampel dipanaskan pada suhu 1100 °C selama 2 jam dan dicelup cepat dalam air. Sampel dibersihkan dan dipanaskan pada suhu 500 °C, 600 °C, 700 °C, dan 750 °C selama 2 jam. Dilakukan identifikasi kristal dengan difraksi sinar-X. Berdasarkan jumlah puncak difraktogram maka *aniling* pada suhu 500 °C dan 700 °C baik untuk presipitasi atau randomisasi kristalit, sedangkan *aniling* pada suhu 600 °C dan 750 °C baik untuk pertumbuhan butir dan yang lebih spesifik *aniling* pada suhu 750 °C baik untuk reorientasi. Regangan mikro paling kecil dari hasil *aniling* 750 °C sebesar 2.38%, dan paling besar dari hasil *aniling* 700 °C sebesar 34,88%. Ukuran kristalit paling kecil dari hasil *aniling* 500 °C dan 700 °C sebesar 11,18Å, dan yang paling besar dari hasil *aniling* 750 °C sebesar 70,71 Å. Densitas dislokasi paling kecil dari hasil *aniling* 750 °C sebesar 6,0x10¹⁴ m/m³ dan yang paling besar dari hasil *aniling* 500 °C dan 700 °C sebesar 2,4x10¹⁶ m/m³. Kekuatan luluh paling kecil dari hasil *aniling* pada 750 °C sebesar 396,11 MPa dan paling besar dari hasil *aniling* 500 °C dan 700 °C sebesar 1043,40 MPa.

Kata kunci : Ukuran kristalit, regangan mikro, kekuatan luluh, XRD

ABSTRACT

CHARACTERIZATION OF CRYSTALLITE SIZE, MICROSTRAIN, AND YIELD STRENGTH OF Zr1%Sn1%Nb1%Fe USING X-RAY DIFFRACTION. It had been conducted characterization of crystallite size, microstrain, and yield strength of Zr1%Sn1%Nb1%Fe using x-ray diffraction. The alloy was prepared by mean of the arc melting furnace. The samples were heated at 1100 °C for 2 hours and then were quenched in cold water. Futhermore the samples were cleaned and anealed at 500 °C, 600 °C, 700 °C, and 750 °C for 2 hours, this heating is called anealing. After that the samples were exposed by x-ray diffraction to identify the crystalls. Based on the resulted peaks, the anealing at 500 °C and 700 °C are good for the precipitation or randomization of the crystallite, meanwhile the anealing at 600 °C and 750 °C are good for the grain growth and the more spesific was the anealing at 750 °C is good for the reorientation. The smallest microstrain was belong to the sample anealed at 750 °C that was 2,38%, and the biggest was belong to the sample anealed at 700 °C that was 34.88%. The smallest crystallite size was belong to the sample anealed at 500 °C and 700 °C that was 11.8Å, and the biggest was belong to the sample anealed at 750 °C that was 70.71Å. The smallest dislocation density was belong to the sample anealed at 750 °C that was 6.0×10^{14} m/m³, and the biggest was belong to the sample anealed at 500 °C and 700 °C that was 6.0x1014 m/m3. The lowets yield strenth was belong to the sample anealed at 750 °C that was 396.11 MPa, and the biggest was belong to the sample anealed at 500 °C and 700 °C that was 1043.40 MPa.

Key words : Crystallite size, microstrain, yield strength, XRD

PENDAHULUAN

Pengembangan reaktor daya sampai saat ini masih terus berlangsung. Peningkatan ini dimaksudkan untuk efisiensi daya, pengurangan limbah dan pengurangan biaya operasional daur bahan bakar. Efisiensi daya lebih mudah dicapai jika suhu operasi teras dinaikkan menjadi antara 400-600 °C. Suhu operasi ini memerlukan pengembangan bahan kelongsong baru. Ozhennite, Zr-0,24Sn-0,1Nb-0,1Fe, tahan korosi sampai pada suhu 450 °C dalam reaktor pada kondisi uap dan air [1]. Paduan selanjutnya Zirlo, Zr-1Sn-12Nb-0,16Fe tahan terhadap suhu operasi 500 °C [2]. Konsep paduan zirkonium terbaru yang disebut *Extra Low Sn* (ELS) yang tahan terhadap derajat bakar sebesar 60 GWd/h yang disebut dengan reaktor generasi kedua [3]. Telah disintesis paduan Zr-1Sn-1Nb-(0,5-1,5)Fe dan dilakukan karakterisasi mikrostruktur, kekerasan, korosi terhadap perlakuan panas dan deformasi [4]. Sifat termal kristal tunggal zircaloy-2 adalah anisotropis, terutama pada parameter kisi $\langle c \rangle$ dan $\langle a \rangle$ dan koefisien termalnya sebesar 11,4 10⁻⁶ K⁻¹ untuk arah $\langle c \rangle$ dan 5,7 10⁻⁶ K⁻¹ untuk arah $\langle a \rangle$ [5]. Tegangan kristal tunggal mengakibatkan tegangan polikristal.

Profil puncak difraksi sinar-X (XRD) umumnya melebar yang disebabkan oleh ukuran kristalit yang sangat kecil, regangan mikro akibat dislokasi, dan ketidak teraturan susunan atom(*stacking faults*). Sehingga pelebaran puncak dapat digunakan untuk analisis bahan.

Koreksi pelebaran puncak akibat instrumen merupakan langkah paling utama untuk mendapatkan difraksi yang murni dari bahan. Pelebaran puncak akibat instrumen (b) didefinisikan sebagai rasio luas puncak (A) dan intensitas maksimum (I_0) jika bebas dari pelebaran puncak bahan. Pelebaran puncak instrumen (b) merupakan fungsi sudut Bragg, θ , diformulasikan sebagai berikut [6]:

$$b^2 = U \tan \theta + V \tan \theta + W \qquad (1)$$

U, V, dan W adalah suatu konstanta. Model ini tidak termasuk divergensi sudut kecil yaitu 2 θ lebih kecil 30°. b^2 diperoleh dengan membuat kurva (*FWHM*)² terhadap tan θ yang menghasilkan suatu regresi polinomial dan persamaan regresi ini ekuivalen dengan persamaan-1, yang selanjutnya diperoleh harga U, V, dan W. Dengan demikian koreksi pelebaran puncak akibat instrumen dapat dihitung.

Peleberan puncak hasil pengamatan (*B*) dikoreksi dengan peleberan puncak akibat instrumen (*b*) dan menghasilkan peleberan puncak terkoreksi (β) dengan rumus berikut [7]:

 $\beta = B - (b^2/B) \qquad (2)$

Pelebaran puncak juga hasil kontribusi dari kristalit (*D*) dan regangan mikro (ε). Formula berikut [8] menunjukkan korelasi antara pelebaran puncak (β) ukuran kristalit (*D*), regangan mikro (ε), sudut *Bragg* (θ), dan panjang gelombang (λ) dalam (Å).

$$(\beta \cos \theta/\lambda)^2 = (1/D)^{2+} (4 \varepsilon \sin \theta/\lambda)^2 \quad \dots \quad (3)$$

Berdasarkan persamaan ini dapat dibuat kurva antara ($\beta \cos \theta/\lambda$)² terhadap (sin θ/λ)², *intersep*nya adalah ($1/D^2$) dan *slop*nya adalah $16(\varepsilon)^2$.

Selanjutnya densitas dislokasi (ρ) dapat dihitung dengan persamaan berikut [9] :

 $\rho = 3 \eta / (D)^2$ (4)

η adalah suatu konstanta yang harganya mendekati 1. Setelah densitas dislokasi diketahui maka kekuatan luluh (Y_s) dapat dihitung dengan persamaan berikut [9]:

Satuan Y₂ dalam Mpa dan ρ dalam m/m³ atau 1/m².

Pada penelitian ini bertujuan mengkarakterisasi ukuran kristalit, regangan mikro dan kekuatan luluh paduan Zr-1%Sn-1%Nb-1%Fe dengan metode difraksi sinar-X.

METODE PERCOBAAN

Penyiapan Sampel

Pembuatan sampel dengan berbagai komposisi (lihat Tabel 1) dilakukan dengan :

Tabel 1. Komposisi paduan

Unsur	Berat serbuk pelet mentah					
	I, g	II, g	III, g			
Zr	14.5494	14.5489	14.5491			
Nb	0.1501	0.1499	0.1502			
Sn	0.1499	0.1502	0.1501			
Fe	0.1506	0.1512	0.1507			

Menimbang sesuai dengan konsentrasi paduan yang diinginkan. Sintesis paduan menggunakan teknik peleburan dengan kadar komposisi Zr1%Sn1%Nb1%Fe, (% berat) dengan cara : Sampel dipanaskan pada suhu 1.100 °C selama 2 jam dan dicelup cepat dalam air, kemudian sampel dibersihkan dan di*anil* pada suhu 500 °C, 600 °C, 700 °C, dan 750 °C selama 2 jam.

Difraksi Sinar-X

Sampel dipoles sampai grid 1200 mesh untuk menghilangkan oksida selama proses berlangsung kemudian pembuatan difraktogram dengan alat JEOL,DX-GERP-12 dengan spesifikasi sebagai berikut: Tube = Cu, Filter = Ni, Tegangan = 36 KV, Arus = 20 MA, $Speed = 2^{\circ}$ /menit. Hasil difraksi dapat dilihat pada Gambar 1 sampai dengan Gambar 5 dan Tabel 2 sampai dengan Tabel 6.

HASIL DAN PEMBAHASAN

Difraktogram hasil dari difraksi sinar-X dapat dilihat pada Tabel 1 untuk sampel hasil celup cepat (Zr-A), Tabel 2 sampel yang di*anil* pada suhu 500 °C (Zr-500), Tabel 3 sampel yang di*anil* pada suhu 600 °C (Zr-600), Tabel 4 sampel yang di*anil* pada suhu 700 °C (Zr-700), dan Tabel-5 sampel yang di*anil* pada suhu 750 °C (Zr-750). Difraktogram sampel celup cepat ada 8 puncak dan intensitas paling besar di sudut 36.100 yaitu bidang (101), difraktogram sampel yang di*anil* pada suhu 500 °C mempunyai 10 puncak dan intensitas paling besar Jurnal Sains Materi Indonesia Indonesian Journal of Materials Science

Gambar 2. Difraksi sinar-X Zr Zr1%Sn1%Nb1%Fe anil 500°C

Tabel 3. Difraktogram Zr-1%Nb-1%Sn-1%Fe (Zr-500)

Tabel 2. Difraktogram Zr-1%Nb-1%Sn-1%Fe (Zr-A)

No	hkl	20 (deg)	d (A°)	I/II	FWHM (deg)	I (kcps)	∫ I (kcps)
1	100	31.600	2.8289	19	0.370	0.099	0.0452
2	00'2	34.400	2.6048	33	0.454	0.176	0.1326
3	101	36.100	2.4859	100	0.427	0.432	0.3006
4	102	47.550	1.9106	15	0.441	0.082	0.0463
5	110	56.450	1.6287	14	0.450	0.073	0.0401
6	103	63.000	1.4742	18	0.523	0.098	0.0661
7	112	67.950	1.3782	12	0.513	0.065	0.0341
8	201	69.050	1.3590	6	0.377	0.032	0.0139

Keterangan :

20 adalah sudut Bragg puncak dalam derajat

d (A°) adalah jarak kisi kristal dalam angstrom

I/II adalah rasio intensitas

FWHM (deg) adalah lebar setengah puncak maksimum dalam derajat

I (kcps) adalah intensitas puncak difraktogram

J I(kcps) intensitas integral puncak dalam kilo*count* per second

di sudut 36,250 yaitu bidang (101), difraktogram sampel yang dianil pada suhu 600 °C mempunyai 8 puncak dan intensitas paling besar di sudut 36,250 yaitu bidang (101), difraktogram sampel yang dianil pada suhu 700 °C mempunyai 13 puncak dan intensitas paling besar di sudut 28,100 yang jika dibandingkan dengan JCPDS(Joint Committee of Powder Diffraction Standard) tidak ada bidang yang sesuai jadi belum dapat diidentifikasi tetapi yang mempunyai intensitas 83% terletak pada sudut 33,950 yaitu bidang (002), dan difraktogram sampel yang dianil pada suhu 750 °C mempunyai 4 puncak dan intensitas paling besar di sudut 36,500 yaitu bidang (101). Dari observasi difraktogram pada sampel Zr-500 dan Zr-700 ada puncakpuncak baru yang muncul (dibandingkan dengan zircaloy-2 dan zircaloy-4) dan ini mungkin salah satu keunikan Zr1Nb1Sn1Fe. Pada pemanasan di kedua suhu ini nampak adanya kecenderungan random dari orientasi kristal. Sebaliknya pada pemanasan 750 °C hanya ada 4 puncak berarti cenderung anisotropi. Jika dikaitkan

20

No	hkl	20 (deg)	d (A°)	I/II	FWHM (deg)	I (kcps)	∫ I (kcps)
1	100	31.700	2.8202	16	0.326	0.078	0.0290
2		33.900	2.6421	7	1.017	0.034	0.0358
3	002	34.550	2.5938	23	0.436	0.113	0.0295
4		35.300	2.5404	12	0.683	0.059	0.0970
5	101	36.250	2.4760	100	0.335	0.486	0.1494
6	102	47.650	1.9068	16	0.395	0.078	0.0399
7	110	56.600	1.6247	11	0.358	0.054	0.0266
8	103	63.150	1.4710	12	0.386	0.058	0.0334
9	112	68.050	1.3766	9	0.430	0.044	0.0213
10	201	69.150	1.3573	8	0.381	0.037	0.0150

Gambar 3. Difraksi sinar-X Zr Zr1%Sn1%Nb1%Fe anil 600°C

Tabel 4. Difraktogram Zr-1%Nb-1%Sn-1%Fe(Zr-600)

No	hkl	20 (deg)	d (A°)	I/II	FWHM (deg)	I (kcps)	∫ I (kcps)
1	100	31.600	2.8289	42	0.355	0.146	0.0622
2	00'2	34.450	2.6011	23	0.476	0.08	0.0720
3	101	36.150	2.4826	100	0.419	0.35	0.1863
4	102	47.550	1.9106	30	0.407	0.106	0.0575
5	110	56.500	1.6274	26	0.395	0.091	0.0423
6	103	63.150	1.4710	12	0.600	0.042	0.0396
7	112	68.100	1.3757	15	0.557	0.054	0.0327
8	201	69.150	1.3573	7	0.633	0.023	0.0130

Gambar 4. Difraksi sinar-X Zr Zr1%Sn1%Nb1%Fe anil 700°C

FWHM I ∫I hkl $d(A^{\circ})$ I/II No 2θ (deg) (deg) (kcps) (kcps) 1 28.100 3.1728 100 0.439 0.090 0.0460 2 002 0.075 33.950 2.6383 83 0.746 0.0511 3 0.000 0.030 0.0000 201 35.150 2.5509 33 4 0.024 40.600 2.2202 27 0.027 0.0096 5 44.450 2.0364 11 0.238 0.010 0.0066 102 15 0.014 6 49.950 1.8243 0.311 0.0030 7 300 55,400 1.6570 34 0.819 0.031 0.0229 8 110 57.000 1.6143 16 0.224 0.014 0.0002 9 0.026 0.0081 59,950 1.5417 28 0.438 10 61.900 1.4977 17 0.960 0.016 0.0107 11 103 63.250 12 0.011 0.0018 1.4690 0.178 12 112 68.050 1.3766 1 0.216 0.010 0.0024 13 69.750 1.3471 8 0.150 0.007 201 0.0010

dengan pengerjaan mekanik maka sampel berorientasi kristal random lebih getas jika dibandingkan dengan sampel yang anisotropi sebab sampel yang random lebih banyak sistem slip yang beroperasi.

Tabel 6. Korelasi pelebaran puncak sebagai fungsi sudut Bragg

		Regresi koreksi pelebaran puncak instrumen				
No	Sampel	Koreksi (b ²) Fungsi tan θ				
1	ZrA	$b^2 =$	$0.674 \tan^2 \theta - 0.5632 \tan \theta + 0.3$			
2	Anil 500 °C	$b^2 =$	$0.7601 \tan^2 \theta - 01.3523 \tan \theta + 0.7$			
3	Anil 600 °C	$b^2 =$	$2.3547 \tan^2 \theta - 1.7965 \tan \theta + 0.5$			
4	Anil 700 °C	$b^2 =$	$1.0882 \tan^2 \theta - 1.3015 \tan \theta + 0.6$			
5	Anil 750 °C	$b^2 =$	$2.3775 \tan^2 \theta - 1.982 \tan \theta + 0.5$			

Koreksi pelebaran puncak instrumen menggunakan persamaan-1 untuk menghitung b^2 sebagai fungsi sudut Bragg untuk masing-masing puncak. Untuk menghitung b^2 dengan cara membuat kurva (FWHM)² vs tanq dan diperoleh regresi seperti pada Tabel-6. Berdasarkan regresi tersebut dapat dihitung b^2 . Kemudian b^2 dimasukkan ke dalam

Gambar 5. Difraksi sinar-X Zr Zr1%Sn1%Nb1%Fe anil 750°C

Tabel 7. Difraktogram Zr-1%Nb-1%Sn-1%Fe (Zr-750)

No	hkl	20 (deg)	d (A°)	I/II	FWHM (deg)	I (kcps)	∫ I (kcps)
1	00'2	34.800	2.5758	100	0.309	0.497	0.1719
2	101	36.500	2.4596	15	0.352	0.075	0.0342
3	211	48.000	1.8938	9	0.314	0.043	0.0187
4	102	47.550	1.4627	31	0.276	0.155	0.0503

persamaan-2 untuk koreksi pelebaran instrumen. Setelah lebar puncak terkoreksi kemudian dibuat kurva antara ($b \cos q/l$)² vs (sinq/l)². Dari kurva ini diperoleh regresi Tabel-7 dan sesuai dengan persamaan-3 maka intersepnya adalah (1/D)²

Tabel 8. Korelasi pelebaran puncak sebagai fungsi kristalit dan regangan mikro

		Regresi koreksi pelebaran kristalit dan regangan mikro				
No	Sampel	$(\beta \cos \theta/\lambda)^2$	$(\sin\theta/\lambda)^2$			
1	ZrA	$(\beta \cos \theta/\lambda)^2 =$	$0.01 (\sin\theta/\lambda)^2 + 0.004$			
2	Anil 500 °C	$(\beta \cos \theta/\lambda)^2 =$	$0.3069 (\sin\theta/\lambda)^2 + 0.008$			
3	Anil 600 °C	$(\beta \cos \theta/\lambda)^2 =$	$0.0224 (\sin\theta/\lambda)^2 + 0.0009$			
4	Anil 700 °C	$(\beta \cos \theta/\lambda)^2 =$	$0.0259 (\sin\theta/\lambda)^2 + 0.008$			
5	Anil 750 °C	$(\beta \cos \theta/\lambda)^2 =$	$0.0091 (\sin\theta/\lambda)^2 + 0.0002$			

yaitu sebagai ukuran kristalit (sub-butir atau *sub-grain*) dan *slop*nya adalah $(4e)^2$ yaitu merupakan regangan mikro. Harga D dapat untuk menghitung densitas dislokasi (r) sesuai dengan persamaan 4 dan selanjutnya dengan persamaan 5 dapat dihitung kekuatan luluh. Ukuran kristalit, regangan mikro, densitas dislokasi, dan kekuatan luluh dapat dilihat pada Tabel 8.

Regangan mikro(e), Tabel 8. Regangan mikro sampel hasil celup cepat sebesar 2,50 %, sampel hasil *anil* 500 °C sebesar 13,85 %, sampel hasil *anil* 600 °C sebesar 3,74 %, sampel hasil *anil* 700 °C sebesar 4,02 %, dan sampel hasil *anil* 750 °C sebesar 2,38 %. Regangan mikro sampel hasil celup cepat dan hasil *anil* 750 °C hampir sama yaitu 2,50 % dan 2,38 %. Data ini menunjukkan bahwa rendahnya regangan mikro kemungkinan akibat

Tabel 9. Regangan mikro, ukuran kristalit densitas dislokasi, dan kekuatan luluh

Sampel	(4 ₈)^2	(1/D)^2	3	D (^Å)	_ρ (m/m^3)	Ys (Mpa)
Zr-A	0.01	4.00E-03	0.0250	15.8114	1.20E+16	818.21
Zr-500	0.3069	8.00E-03	0.1385	11.1803	2.40E+16	1043.40
Zr-600	0.0224	9.00E-04	0.0374	33.3333	2.70E+15	532.43
Zr-700	0.0259	8.00E-03	0.0402	11.1803	2.40E+16	1043.40
Zr-750	0.0091	2.00E-04	0.0238	70.7107	6.00E+14	396.11

logam pemadu membentuk larutan padat, sebab pada peleburan paduan kemungkinan terjadi presipitatasi dan himpitan butir (stacking fault) yang menyebabkan tingginya regangan mikro. Sampel yang dianil 500 °C mempunyai regangan mikro 13,85 % dan sampel yang dianil 700 °C mempunyai regangan mikro 34,85 %. Jika dilihat puncak-puncak pada difraktogram, sampel yang dianil 500 °C mempunyai 10 puncak dan sampel yang dianil 700 °C sebanyak 13 puncak. Fakta ini menunjukkan bahwa adanya inti kristal yang terbentuk lebih banyak dibanding perlakuan panas yang lain. Inti kristal tersebut kemungkinan presipitat, yang kemungkinan menyebabkan terhambatnya pertumbuhan kristal(grain growth). Akibatnya inti butir tidak tumbuh sama sisi (equiaxed) tetapi mengarah pada arah tertentu atau memanjang. Jadi aniling pada 500 °C dan 700 °C baik untuk presipitasi atau randomisasi kristal. Regangan mikro hasil anil 600 °C sebesar 3,74 % naik sedikit jika dibandingkan dengan sampel hasil celup cepat sebesar 2,50 %. Difraktogram sampel ini mempunyai 8 puncak sama dengan sampel hasil celup cepat. Jadi aniling pada suhu 600 °C baik untuk pertumbuhan butir (grain growth). Sedangkan kenaikan regangan mikro dibanding sampel hasil celup cepat kemungkinan besar akibat himpitan butir, sebab tidak ada pengurangan dan penambahan puncak pada difraktogram yang berarti tidak ada inti yang lenyap atau timbul. Sampel yang dianil pada suhu 750 °C mempunyai regangan mikro 2,38 %. Difraktogram sampel ini mempunyai 4 puncak, setengah dari difraktogram hasil celup cepat. Berarti aniling pada suhu ini baik untuk pertumbuhan butir yang sama sisi (equiaxed), karena tidak adanya hipitan butir atau presipitat yang mengakibatkan regangan mikro kecil.

Ukuran kristalit(D = Å), Tabel 8. ukuran kristalit sampel hasil celup cepat sebesar 15,81 Å, hasil *aniling* 500 °C sebesar 11,18 Å, hasil *aniling* 600 °C sebesar 33,33 Å, hasil *aniling* 700 °C sebesar 11,18 Å dan hasil *aniling* 750 °C sebesar 70,71 Å. Jika dibandingkan sampel hasil celup cepat, *aniling* 600 °C, dan 750 °C, ukuran kristalit bertambah besar dengan suhu *aniling*. Ukuran kristalit paling besar dari hasil *aniling* 750 °C sebesar 70,71 Å. Jika dilihat jumlah puncak pada difraktogram dari hasil celup cepat sebanyak 8 puncak sama dengan puncak hasil *aniling* 600 °C, tetapi pada *aniling* 750 °C jumlah puncak ini maka suhu *aniling* 600 °C baik untuk pertumbuhan butir tanpa mengubah jenis kristal dan *aniling* pada 750 °C juga baik untuk pertumbuhan kristal tetapi ada pengurangan puncak pada difraktogram berarti ada pengurangan jenis kristal yaitu menjadi 4 jenis. Jika dibandingkan sampel hasil celup cepat, hasil *aniling* 500 °C, dan 700 °C mempunyai ukuran kristalit sama yaitu 11,18 Å. Begitu juka jika dibandingkan jumlah puncak difraktogram pada *aniling* 500 °C, jadi *aniling* pada suhu ini baik untuk memperbanyak jenis kristalit atau randomisasi dan yang paling baik *aniling* pada suhu 700 °C.

Tabel 9 menunjukkan densitas dislokasi (r = m/m³) sampel hasil celup cepat sebesar 1,2 x 10^{16} m/m³, hasil *aniling* 500 °C sebesar 2,4 x 10^{16} m/m³, hasil *aniling* 600 °C sebesar 2,7 x 10^{15} m/m³, hasil *aniling* 700 °C sebesar 2,4 x 10^{16} m/m³, hasil *aniling* 750 °C sebesar 6,0 x 10^{14} m/m³. Jika dibandingkan ukuran kristalit dan densitas kristalit hasil celup cepat, *aniling* 600 °C, dan *aniling* 750 °C, berturut-turut sebagai berikut : 15,18 Å, 33,33 Å, dan 70,71 Å, dan, 1,2 x 10^{16} m/m³, 2,7 x 10^{15} m/m³, dan 6,0 x 10^{14} m/m³. Dari data ini dapat disimpulkan bahwa semakin besar ukuran kristalit semakin besar kecil densitas dislokasi.

Kekuatan luluh(Ys=Mpa), Tabel 8. kekuatan luluh sampel hasil celup cepat sebesar 818,21 Mpa, hasil aniling 500 °C sebesar 103,40 Mpa, hasil aniling 600 °C sebesar 532 Mpa, hasil aniling 700 °C sebesar 1043,40 Mpa, dan hasil aniling 750 °C sebesar 396,11 Mpa. Jika dibandingkan kekuatan luluh hasil celup cepat, aniling 600 °C, dan 750 °C, didapat bahwa kekuatan luluh menurun dengan suhu celup cepat. Korelasi tegangan (s) dan densitas dislokasi(r) secara empiris diformulasikan sebagai berikut⁽⁸⁾, $s = s_a + kr^{1/2}$. Korelasi ini sama dengan persamaan 5 yang diperoleh dari penjabaran kristalografi. Kekuatan luluh hasil aniling 500 °C dan hasil aniling 700 °C sama yaitu sebesar 1043,40 Mpa, jadi aniling pada suhu ini baik untuk pengerasan(hardening) atau penguatan(strengthening). Sedangkan aniling pada suhu 600 °C dan 750 °C baik untuk pelunakan(softening) atau pembebasan tegangan sisa (residual stress release).

KESIMPULAN

- 1. Berdasarkan jumlah puncak difraktogram maka aniling Zr1%Sn1%Nb1%Fe pada suhu 500 °C dan 700 °C baik untuk presipitasi atau randomisasi kristalit, sedangkan aniling pada suhu 600 °C dan 750 °C baik untuk pertumbuhan butir dan yang lebih spesifik aniling pada suhu 750 °C baik untuk reorientasi.
- 2. Regangan mikro paling kecil dari 750 °C sebesar 2,38%, dan paling besar dari hasil *aniling* 700 °C sebesar 34,88%.

Karakterisasi Ukuran Kristalit, Regangan mikro dan Kekuatan Luluh Zr1%Sn1%Nb1%Fe dengan Difraksi Sinar-X (Sugondo)

- Ukuran kristalit paling kecil dari hasil *aniling* 500 °C dan 700 °C sebesar 11,18Å, dan yang paling besar dari hasil *aniling* 750 °C sebesar 70,71 Å.
- Densitas dislokasi paling kecil dari hasil aniling 750 °C sebesar 6,0x10¹⁴ m/m³ dan yang paling besar dari hasil aniling 500 °C dan 700 °C sebesar 2,4x10¹⁶ m/m³.
- 5. Kekuatan luluh paling kecil dari hasil *aniling* pada 750 °C sebesar 396,11 Mpa dan paling besar dari hasil *aniling* 500 °C dan 700 °C sebesar 1043,40 Mpa.

DAFTARACUAN

- CHEMELLE P., KNORR D.B., VANDER S.J.B., AND PELLOUX R.M., Morphology and Composition of Second Phase Particles in Zircaloy-2, *Jounal of Nuclear Materials*, **113** (1983) 88 – 64
- [2]. AECL, Water Side Corrosion of Zirconium Alloys in Nuclear Power Plants, *IAEA-TECDOC*, (1996–1998) 126
- [3]. MARDON, J.P. et.al., Development of New Zirconium Alloys for PWR Fuel Rod Cladding, *Proceedings 1994 International Topical Meeting on Light Water Reactor Fuel Performance*, Florida, (1994) 643
- [4]. SUGONDO, ABDUL LATIEF, DAN SLAMET PRIBADI, Sintesa Paduan Zr-Sn-Nb-Fe dengan Metoda Peleburan, *Seminar Material LIPI*, Serpong, (1999)
- [5]. MacEWEN S.R., CHRISTODOULOU N., and SALINAS-RODRIGUEZ A., Residual Grain-Interaction Stresses in Zirconium Alloys, *Metallurgical Transactions A*, 21A, (1990) 1085-1095
- [6]. CAGLIOTI G, PAOLETTI A. and RICCI F. P., Nuclear Instrument Method, 3 223, 1958, in KAPOOR K., LAHIRI D., RAO S. V.R., SANYAL T., and KASHYAP B.P., X-Ray Diffraction Line Profile Analysis for Defect Study in Zr-2.5% Nb, Bulletin Material Science, 27 (1) (2004) 64
- [7]. RAMA RAO P., ANANTHARAMAN T.R., Z.Metallk 54 658, 1963, in KAPOOR K., LAHIRI D., RAO S.V.R., SANYAL T., and KASHYAP B.P., X-Ray Diffraction Line Profile Analysis for Defect Study in Zr-2.5% Nb, *Bulletin Material Science*, 27 (1), (2004) 65
- [8]. SHARP J.V., MAKIN M.J., and CHRISTIAN J.W., Physics Status Solidi 11 845, 1965 in KAPOOR K., LAHIRI D., RAO S.V.R., SANYAL T., and KASHYAP B.P., X-Ray Diffraction Line Profile Analysis for Defect Study in Zr-2.5% Nb, *Bulletin Material Science*, 27 (1), (2004) 65
- [9]. REED-HILL R.E., *Physical Metallurgy Principles* 2nd Ed., Wadsward, California, (1973) 832