Akreditasi LIPI Nomor : 395/D/2012 Tanggal 24 April 2012

MODIFIKASI SINTESIS DAN PENINGKATAN KARAKTERISTIK MAGNETIK NANOPARTIKEL *CORE/SHELL* Fe/Oksida Fe HASIL REAKSI REDUKSI BOROHIDRIDA

Mujamilah, Grace Tj. S., Wildan Z.L. dan Agus Salim A.

Pusat Teknologi Bahan Industri Nuklir (PTBIN)-BATAN Kawasan Puspiptek, Serpong 15314, Tangerang Selatan e-mail : ian@batan.go.id

Diterima: 4 Mei 2012 Diperbaiki: 27 Agustus 2012 Disetujui: 11 September 2012

ABSTRAK

MODIFIKASI SINTESIS DAN PENINGKATAN KARAKTERISTIK MAGNETIK NANOPARTIKEL CORE/SHELL Fe/Oksida Fe HASIL REAKSI REDUKSI BOROHIDRIDA. Telah dibuat nanopartikel berstruktur *core/shell* Fe/oksida Fe dengan nilai magnetisasi tinggi melalui tahapan reaksi reduksi FeCl₃ oleh reduktor Natrium Borohidrida (NaBH₄), pencucian endapan dalam etanol, pemanasan 75 °C dalam suasana vakum, dilanjutkan dengan proses oksidasi terkendali dengan pereaksi *Trimethylamine N-Oxide (TMNO)*. Morfologi struktur nanopartikel *core/shell* dipelajari dari foto hasil pengamatan dengan *Transmission Electron Microscope (TEM)*, sifat magnetik ditentukan dari kurva histeresis hasil pengukuran dengan *Vibrating Sample Magnetometer (VSM)* dan fasa dianalisis dari pola difraksi sinar-X. Diperoleh bahwa karakteristik magnetik yang terbentuk dipengaruhi oleh kondisi proses pencucian untuk menghilangkan fasa sisa reaktan dan kondisi pemanasan untuk penyempurnaan reaksi pembentukan *core*. Pemanasan yang terlalu lama cenderung menurunkan sifat magnetik karena meningkatkan fasa-fasa minor FeB dan Fe₂B. Pada tahapan oksidasi, selain pembentukan lapisan *shell* oksida Fe pada permukaan *core* Fe, juga terjadi proses reduksi fasa minor tersebut dan memberikan peningkatan sifat magnetik. Karakteristik optimal nanopartikel dengan ukuran kristalin ~ 8 nm dalam partikel *core* Fe berukuran < 30 nm dan *shell* oksida Fe setebal ~ 3 nm dengan magnetisasi saturasi $M_s \sim 130$ emu/gram diperoleh pada proses sintesis dengan pencucian 15x diikuti pemanasan 4 jam.

Kata kunci: Magnetik nanopartikel, Core-shell, Fe/Oksida Fe, Reduksi

ABSTRACT

SYNTHESIZE MODIFICATION AND MAGNETIC CHARACTERISTIC IMPROVEMENT OF Fe/Fe OXIDE CORE/SHELL NANOPARTCLE PRODUCE BY BOROHYDRYDE REDUCTION **REACTION**. Nanoparticle of Fe/Fe oxide core/shell structure with high magnetization values has been successfully sinthesized through reduction of FeCl₃ by NaBH₄ reductor, repeat washing in ethanol, heat treatment at 75 °C and vacuum atmosphere, followed by controlled oxidation with Trimethylamine N-Oxide (TMNO). Morphological structure of the core/shell nanoparticles were evaluated from the image observed with Transmission Electron Microscope (TEM), magnetic properties through the hysteresis curve measured by Vibrating Sample Magnetometer (VSM) while the phase were analysed from its X-Ray diffraction patterns. Magnetic characteristics of the nanoparticles are found to be affected by the condition of washing process to remove residual phase reactants and heat treatment conditions for the completion of core formation. Too long heating tend to lowered the magnetic properties due to increasing of FeB and Fe,B minor phases. During oxidation process, beside formation of Fe oxide shell on the surface of Fe core, reduction of these minor phases was also proceed and resulted in enhanced of magnetic properties. Optimal characteristics of nanoparticle with a crystalline size of ~ 8 nm within Fe core of < 30 nm particle size and Fe oxide shell of ~ 3 nm thickness with saturation magnetization $M_{r} \sim 130$ emu/g obtained in the synthesis with 15x washing steps followed by heat treatment at 4 hours.

Keywords: Magnetic nanoparticle, Core-shell, Fe/Oksida Fe, Reduction

PENDAHULUAN

Sintesis nanopartikel magnetik dengan struktur core/shell dengan core berupa fasa Fe⁰ atau nZVI (nano Zero Valent Iron) dan shell oksida Fe yang memberikan passive layer untuk mengendalikan oksidasi core Fe⁰, banyak dilakukan dengan metoda reduksi ion Fe³⁺ ataupun Fe²⁺ dengan alkali borohidrid (NaBH.) [1] atau KBH₄ [2]. Metode ini melibatkan proses dan bahan prekursor yang sederhana sehingga dapat dilakukan pada laboratorium kimia umum tanpa memerlukan kondisi dan peralatan yang spesifik. Dikembangkan pertama kali oleh oleh peneliti sebelumya pada tahun 1997 [3], metode ini digunakan untuk menghasilkan nanopartikel magnetik struktur core/shell dengan sifat magnetik unggul yang digunakan dalam berbagai proses remediasi lingkungan [4]. Dengan metode ini, modifikasi proses juga lebih mudah dilakukan untuk mendapatkan nanopartikel magnetik yang terkombinasi dengan bahan lain yang disesuaikan dengan aplikasi yang akan dikembangkan.

Penumbuhan nZVI dalam media *montmorillonite* memberikan nZVI dengan distribusi ukuran yang terkontrol, modifikasi permukaan sehingga terlindung dari proses oksidasi dan aglomerasi yang potensial digunakan dalam proses separasi [5]. Modifikasi lanjut permukaan *core/shell* nZVI/oksida Fe dengan *TEOS* memberikan permukaan dengan gugus aktif yang dapat direaksikan dengan bahan organik untuk berbagai aplikasi biomedis [6].

Dalam proses sintesis nanopartikel magnetik dengan metode reduksi ini adalah bahwa produk dan karakteristik nanopartikel akan sangat bergantung pada kondisi sintesis, seperti kecepatan pemberian reduktor, proses pencucian presipitat dan kompossi prekursor. Kecepatan proses penetesan NaBH₄ akan menghasilkan nanopartikel *core/shell* dengan sifat yang berbeda, dimana makin cepat penetesan akan diperoleh inti *core* Fe⁰ yang lebih banyak dan interaksi antar inti ini akan menghambat pertumbuhan nanopartikel dan terbentuk nanopartikel dengan derajat kristalisasi rendah. Sebaliknya untuk penetesan/reaksi reduktor yang lambat, inti yang terbentuk akan lebih sedikit dan sempat tumbuh dengan baik namun akan memberikan partikel yang berukuran besar [7].

Penelitian lain menunjukkan bahwa pencucian berulang dengan *DI water* yang dicampur surfaktan *Triton-X* pada nanopartikel magnetik yang disintesis dalam mikroemulsi dengan surfaktan CTAB menghasilkan nanopartikel dengan karakteristik *core/shell* yang baik dengan nilai magnetisasi tertinggi mencapai 115 emu/gram [8]. Hasil penelitian sebelumnya untuk optimalisasi komposisi prekursor, memberikan rasio 1 : 2 untuk mol Fe³⁺ terhadap NaBH₄ namun masih menyisakan masalah tersisanya fasa-fasa pengotor yang menurunkan karakteristik magnetik *core/shell* yang terbentuk [9].

Pada makalah ini akan disampaikan hasil percobaan lanjut pada nanopartikel core/shell tersebut dengan memodifikasi parameter proses pencucian dan pemanasan hasil reduksi. Berbeda dengan proses yang dilakukan peneliti sebelumnya [8], pada percobaan ini digunakan larutan pencuci etanol yang lebih murah dibanding Triton-X DI water. Jumlah proses pencucian divariasikan dan dilakukan kontrol pengendapan presipitat untuk mendapatkan nanopartikel magnetik yang bersih dan dievaluasi dari stabilitas nilai pH larutan sisa cucian. Selanjutnya dilakukan kontrol proses pengeringan endapan nanopartikel dalam oven yang divakumkan secara periodik dengan variasi waktu pemanasan. Nanopartikel magnetik yang diperoleh dikarakterisasi morfologi, fasa dan sifat magnetiknya dan dibahas sebagai fungsi perubahan parameter proses tersebut.

METODE PERCOBAAN

Secara prinsip, bahan yang digunakan dan proses pembuatan tetap mengacu pada prosedur seperti pada peneliti sebelumnya [9] yang meliputi tahapan proses reduksi Fe³⁺ (dalam bentuk FeCl₃.6H₂O) yang dilarutkan dalam campuran etanol/air (rasio 4:1) oleh reduktor *borohydride* (NaBH₄) (rasio mol 1:2) dengan kecepatan

Gambar 1. Skema modfikasi proses sintesis core/shell Fe/oksida Fe dengan reaksi kimia reduksi

tetes reduktor 10 mL/menit. Endapan yang diperoleh dicuci secara berulang dengan etanol murni dengan volume larutan pencuci 10 mL untuk tiap 1 gram sampel. Kedua proses ini dilakukan dalam suasana gas N_2 Ultra High Purity (UHP). Proses dilanjutkan dengan pemanasan endapan serbuk hasil pencucian pada suhu 75 °C, oksidasi dengan Trimethylamine N-Oxide (TMNO) dan diakhiri dengan pencucian berulang dengan metanol serta pengeringan serbuk dengan meniupkan gas Ar UHP.

Modifikasi dilakukan dengan penggunaan DI water sebagai pengganti air demin dalam proses pelarutan $FeCl_3.6H_2O$. Pada tahap pencucian, pengulangan dilakukan hingga 10x dan 15x dengan mengamati nilai pH pada setiap akhir satu tahapan pencucian. Proses pemanasan dilakukan dalam *oven* yang divakumkan secara periodik hingga mencapai tekanan udara ~10⁻² torr dan dengan memvariasikan waktu pemanasan. Secara skematik proses modifikasi yang dilakukan pada penelitian ini dan kode sampelnya (*Core/shell*1 (CS1) hingga CS6) ditampilkan pada Gambar 1. Sampel kering baik sebelum dan sesudah oksidasi ditempatkan dalam botol dan disimpan dalam *vacuum desiccator* untuk proses dan karakterisasi selanjutnya.

Karakterisasi morfologi serbuk nanopartikel dilakukan menggunakan *Transmission Electron Microscope (TEM) JEOL JEM 1400* yang terpasang di FMIPA-UGM dengan magnifikasi maksimum 250.000. Untuk preparasi sampel, serbuk disonikasi dalam larutan etanol dan bagian supernatan diteteskan pada *grid formvar* yang telah dilapis karbon. Sampel dikeringkan terlebih dahulu sebelum pengamatan. Identifikasi fasa yang terbentuk dilakukan dengan menganalisis pola difraksi sinar-X sampel serbuk hasil pengukuran dengan Difraktometer Sinar-X *PANalytical Xpert-Pro* di PTNBR- BATAN. Pengukuran dilakukan dengan sumber CuKa $(\lambda = 1,54056 \text{ Å})$ pada rentang sudut 10° hingga 80°. Kurva histeresis magnetik serbuk nanopartikel diukur dengan *Vibrating Sample Magnetometer (VSM) OXFORD 1.2T* yang terpasang di PTBIN-BATAN pada suhu ruang dan medan luar maksimal 1 T. Dari kurva ini ditentukan nilai-nilai magnetisasi saturasi M_s , magnetisasi dan nilai medan koersiv nanopartikel H_c .

HASIL DAN PEMBAHASAN

Secara umum, dari seluruh rangkaian proses sintesis beberapa hal praktis terpantau dapat mempengaruhi karakteristik akhir hasil sintesis. Yang pertama, pemakaian DI water sebagai pengganti air demineral dalam pelarutan FeCl₂.6H₂O memberikan medium pelarut yang lebih murni yang pada akhirnya lebih bisa menyempurnakan reaksi yang terjadi. Yang kedua, adalah proses pengendapan hasil cucian. Seperti pada proses presipitasi umumnya, proses pengendapan serbuk nanopartikel dilakukan dengan bantuan magnet permanen. Diperoleh bahwa proses pemisahan serbuk dari larutan pencuci akan memberikan serbuk yang lebih bersih bila magnet diletakkan disamping gelas. Bila magnet diletakkan di bawah gelas, serbuk akan mengendap di bawah bersama-sama dengan endapan sisa reaktan sehingga endapan serbuk menjadi kembali terkotori. Kondisi ini terpantau dari tetap keruhnya larutan sisa cucian meski setelah beberapa kali proses pencucian.

Dibanding proses sintesis sebelumnya (Sintesis 1, S1) pada penelitian sebelumnya [9], modifikasi pencucian dan kondisi pemanasan yang dilakukan pada penelitian ini terbukti telah dapat meningkatkan karakteristik nanopartikel yang terbentuk. Secara umum, evaluasi nilai pH larutan pencuci

Gambar 2. Foto hasil pengamatan TEM nanopartikel core/shell hasil pencucian 3x (S1T) dan hasil modifikasi (CS2, CS4, CS6) setelah proses oksidasi TMNO (skala 50 nm untuk gambar umum dan 20 nm untuk gambar detail)

Jurnal Sains Materi Indonesia Indonesian Journal of Materials Science

Gambar 3. Kurva histeresis magnetik dan tabel nilai Ms dan Hc nanopartikel *core/shell* hasil modifikasi (CS1-CS6) dibanding sampel dari sintesis 1 sebelum dan sesudah oksidasi.

Vol. 14, No. 1, Oktober 2012, hal : 1 - 7 ISSN : 1411-1098

Gambar 4. Pola difraksi sinar-X sampel CS1 dan CS2 dibandingkan dengan sampel sintesis 1 sebelum dan sesudah proses oksidasi.

menunjukkan nilai stabil 7 dari pencucian ke 4 hingga pencucian ke 10. Pada cucian 5x berikutnya pH turun hingga nilai 6. Foto hasil pengamatan *Transmission Electron Microscope (TEM)* serbuk hasil modifikasi pada Gambar 2, mengkonfirmasi terbentuknya struktur nanopartikel *core/shell* dengan ukuran nanopartikel akhir yang lebih kecil dibanding sintesis sebelumnya.

Secara umum core Fe berukuran < 30 nm terbentuk dengan *shell* yang lebih rata dan halus setebal ~ 3 nm pada permukaan. Nanopartikel CS2 disamping mulai mengecil dari segi ukuran, juga telah mulai terbentuk lapisan yang mengelilingi keseluruhan permukaan *core* sehingga dapat terlepas dari bentukan rantai panjang yang terselubung lapisan *shell* seperti pada pembuatan sebelumnya (S1T) [7,9]. Penambahan waktu pemanasan memberikan nanopartikel CS4 (Gambar 2(g)) yang lebih homogen distribusi ukuran dan warnanya yang menunjukkan sempurnanya pembentukan fasa. Penambahan tahapan pencucian (CS6) (Gambar 2(h)) lebih berdampak pada perolehan nanopartikel dengan distribusi ukuran yang lebih kecil.

Kurva histeresis magnetik hasil pengukuran VSM yang ditampilkan pada Gambar 3 menunjukkan dengan jelas adanya peningkatan sifat magnetik pada sampel CS1 dibanding sampel dari sintesis 1 (Gambar 2(a)). Proses oksidasi dengan TMNO (CS2 Gambar 2(d)) meningkatkan lebih lanjut nilai magnetisasi saturasi, M_s hingga mencapai ~132 emu/gram jauh melampaui nilai M_s hasil sintesis 1 maupun dari peneliti sebelumnya [7,8]. Penambahan waktu pemanasan (CS3) tidak mengubah nilai magnetisasi setelah proses oksidasi (CS4, Gambar 2(e)). Penambahan tahapan pencucian (CS5) lebih memberikan efek positif dengan meningkatkan M_s sebelum proses oksidasi (Gambar 2(c)) dan stabil setelah proses oksidasi (CS6, Gambar 2(e)).

Morfologi yang terbentuk dan peningkatan sifat magnetik ini dapat dijelaskan dari hasil analisis pola difraksi sinar-X yang ditampilkan pada Gambar 4. Pada pola difraksi sampel CS1 dan CS2 terbentuk puncak difraksi yang meninggi dan menajam dengan posisi yang bergeser ke arah sudut besar dibanding pada sintesis 1 untuk sampel sebelum proses oksidasi. Puncak-puncak tersebut dicoba diidentifikasi dengan fasa-fasa berbasis Fe, Fe-B serta turunan *borohydride* dengan mengacu pada *data base Joint Commitee for Powder Diffraction File (JCPDF)*[10].

Puncak pada sampel sintesis 1 sebelum proses oksidasi (Gambar 5(a)) berada pada $2\theta \sim 43,9^{\circ}$, bergeser cukup jauh dari posisi puncak fasa-fasa berbasis Fe (Fe (PCPDF#06-0696), FeB (PCPDF#32-0463), Fe₂B (PCPDF#39-1314)). Mengacu pada persamaan *Bragg* : $2d \sin\theta = n\lambda$, maka pergeseran puncak ke arah sudut

Gambar 5. Fitting kurva *Lorentzian* puncak difraksi sinar-X tertinggi untuk sampel sebelum dan sesudah proses oksidasi.

yang lebih kecil akan memberikan d atau jarak antar atom yang lebih besar dari yang seharusnya. Artinya, bahwa pembentukan keteraturan atom Fe pada sampel sintesis 1 sebelum oksidasi masih belum sempurna dan hanya terjadi keteraturan yang berjangka pendek (short range order), itupun dengan intensitas yang rendah. Selain itu juga masih teridentifikasi dengan jelas hadirnya puncakpuncak NaBH, (PDF#381022), menunjukkan masih belum sempurnanya proses reaksi yang terjadi. Reaksi dengan TMNO (Gambar 5(b)) selain mengakibatkan terbentuknya lapisan shell oksida Fe (fasa Fe₂O₄ (PDF#82-1533)/ γ-Fe₂O₂ (PDF#39-1346) pada permukaan core juga kemungkinan mengoksidasi fasa-fasa turunan borohydride dan meningkatkan reaksi pembentukan fasa core berbasis Fe. Sebagai hasilnya diperoleh nanopartikel magnetik dengan fasa mayor Fe yang disertai fasa minor FeB/Fe₂B sebagai core yang terkungkung shell oksida Fe yang cukup jelas terdeteksi pada pola difraksi sinar-X, teramati dalam foto morfologi TEM dengan core yang berukuran cukup besar, shell yang cukup tebal serta belum optimalnya sifat magnetik seperti yang telah disampaikan di atas.

Pola difraksi sampel CS1 menunjukkan bahwa proses pencucian dan pemanasan dari awal telah mampu memberikan fasa yang bersih yang menunjukkan telah sempurnanya reaksi, menempatkan atom-atom Fe pada posisinya dalam struktur kristal Fe dan kemungkinan fasa-fasa FeB/Fe₂B yang terbentuk selama proses pemanasan [11]. Proses oksidasi (CS2) menaikkan puncak difraksi yang menggambarkan makin sempurnanya keteraturan atom Fe dalam nanopartikel dan makin banyaknya jumlah keteraturan yang terbentuk. Selain itu puncak cenderung bergeser ke arah posisi puncak Fe (Gambar 3(c)) yang menunjukkan berkurangnya fasa Fe-B menjadi fasa Fe. Hal ini sesuai reaksi yang terjadi selama proses oksidasi dengan Persamaan (1) reaksi [11]:

 B_2O_3 yang terbentuk akan hilang pada saat pencucian dengan metanol setelah proses oksidasi. Namun puncak oksida Fe hampir-hampir tak terdeteksi pada pola difraksi CS2 yang menunjukkan fraksi fasa oksida Fe yang terbentuk berjumlah sangat sedikit dibanding fasa Fe dan dengan ukuran kristalin yang kecil. Analisis ini sesuai dengan terbentuknya *shell* yang cukup tipis (~ 3 nm) pada *core* sampel CS2.

Evaluasi kuantitatif posisi dan pelebaran puncak ditentukan dari *fitting* puncak difraksi menggunakan pendekatan kurva *Lorentzian* seperti yang ditampilkan pada Gambar 5. Pergeseran dan perubahan lebar puncak *Full Width at Half Maximum (FWHM)* akibat prosesproses yang telah dilakukan tergambar dengan jelas pada kurva *fitting* ini sesuai pembahasan di atas.

Pada Gambar 6(a) ditampilkan pola difraksi sinar-X untuk semua sampel dengan berbagai modifikasi yang telah dibuat. Secara umum pola menunjukkan pola tipikal yang sama dengan puncak utama Fe. Tak terdeteksi

Gambar 6. Pola difraksi sinar-X (a). sampel hasil modifikasi dan (b). kurva *fitting Lorentzian* dengan identifikasi fasa sekitar puncak.

puncak difraksi dari fasa oksida Fe pada semua pola sampel yang konsisten dengan data tipisnya *shell* oksida Fe pada gambaran morfologi hasil pengamatan *Transmission Electron Microscope (TEM)*. Evaluasi lebih lanjut dengan menggunakan *fitting Lorentzian* pada puncak utama mendukung analisis pergeseran puncak untuk sampel-sampel setelah oksidasi (Gambar 6(b)). Derajat keteraturan/kristalinitas nanopartikel dicoba dihitung dengan menggunakan persamaan *Debye-Scherrer*: $D = (0,94 \text{ x} \lambda) / [(FWHM))$ x cos θ] [12]. Data posisi puncak hasil *fitting* serta perhitungan ukuran kristalin nanopartikel ditampilkan pada Tabel 1.

Untuk sampel CS3 dengan pemanasan yang lebih lama, puncak cenderung bergeser ke arah fasa Fe-B seperti yang telah dibahas pada peneliti sebelumnya [11] dan akhirnya memberikan nilai M_s yang lebih rendah pada CS4 dibanding CS2. Untuk sampel CS5, proses pencucian yang lebih banyak memberikan fasa yang lebih bersih dari awal sehingga waktu pemanasan yang lebih pendek telah mampu menghomogenkan fasa serta mengurangi pembentukan fasa Fe-B yang akhirnya

Tabel 1. Posisi puncak hasil *fitting Lorentzian*, *FWHM* dan ukuran kristalin nanopartikel *core/shell* sebelum dan sesudah modifikasi

			-
Sampel	2θ (°)	FWHM (°)	Ukuran kristalin (nm)
S1	43,905	1,2566	7,119
S1T	44,77	1,2046	7,449
CS1	44,795	1,0114	8,873
CS2	44,755	1,0181	8,813
CS3	44,851	1,045	8,589
CS4	44,797	1,0408	8,622
CS6	44,757	1,0957	8,189

Tabel 2. Hubungan nilai koersivitas dan magnetik saturasi nanopartikel *core/shell* sebelum dan sesudah modifikasi dari berbagai sampel

Sampel	M_s (emu/g)	H_c (Oe)
S1	39,2	1016
S1T	70,2	1016
CS1	89	870
CS2	132	780
CS3	88,45	830
CS4	114,58	400*
CS5	97,78	760
CS6	128,93	800

menghasilkan kenaikan nilai M_s . Proses oksidasi mengurangi lebih lanjut fasa Fe-B ini dan makin menggeser puncak difraksi ke arah fasa Fe dan memberikan nilai M_s yang sama seperti pada CS2.

Ukuran kristalin secara umum meningkat dibanding hasil sintesis sebelumnya yang menunjukkan pertumbuhan kristalin terjadi pada saat reaksi reduksi dan disempurnakan pada saat pemanasan dan oksidasi. Peningkatan waktu pemanasan sampai batas waktu tertentu (8 jam dalam percobaan ini) meningkatkan pertumbuhan kristalin bahan. Namun peningkatan waktu lebih lanjut tidak lagi meningkatkan ukuran kristalin dan hanya akan menghomogenkan fasa baik *core* Fe dan *shell* oksida Fe seperti yang terrepresentasikan pada foto *TEM* untuk sampel CS4.

Ukuran kristalin ini dianalisis mempengaruhi nilai koersivitas H_a nanopartikel seperti yang ditampilkan pada Tabel 2. Nanopartikel hasil modifikasi dalam percobaan ini mempunyai ukuran < 30 nm untuk core Fe dan ukuran kristalin ~ 8 nm. Mengacu pada data analisis hubungan koersivitas dan ukuran partikel [13] seperti yang ditampilkan pada Gambar 7 serta data critical diameter, d_{erit} untuk nanopartikel Fe ~ 15 nm [12,13], maka dapat dipastikan hadirnya lebih dari 1 domain dalam nanopartikel. Namun demikian sebagaimana dibahas dalam peneliti sebelumnya, untuk kasus nanopartikel dengan perbandingan ukuran partikel dan kristalin yang tidak terlalu besar, tebal dinding domain menjadi tidak cukup signifikan utnuk membatasi gerak spin partikel sehingga keseluruhan partikel dapat dianggap sebagai 1 domain, Sifat magnetik terutama H_{a} akan lebih dipengaruhi oleh interaksi antar partikel dalam hal ini antar core Fe karena oksida Fe hanya merupakan

Gambar 7. Kurva kualitatif nilai koersivitas magnetik, Hc sebagai fungsi ukuran partikel, d.

lapisan tipis [12,13]. Kombinasi ukuran nanopartikel yang kecil sehingga memberi permukaan interaksi yang luas dan interaksi magnetik antar nanopartikel yang kuat akan memberikan nanopartikel dengan H_c yang tinggi Untuk menurunkan nilai H_c ini, dilakukan modifikasi lanjut untuk mengimbangi interaksi magnetik antar partikel yang kuat misalkan dengan memberikan surfaktan polar pada permukaan nanopartikel [14]. Surfaktan ini juga dapat berfungsi sebagai jembatan untuk fungsionalisasi lanjut dengan bahan organik/ anorganik lainnya yang sesuai dengan aplikasi yang akan dikembangkan.

KESIMPULAN

Dalam makalah ini telah berhasil disintesis nanopartikel magnetik struktur *core/shell* Fe/oksida Fe melalui proses reaksi reduksi untuk pembentukan *core* Fe yang diikuti dengan proses oksidasi untuk pembentukan *shell* oksida Fe. Diperoleh bahwa karakteristik magnetik yang terbentuk dipengaruhi oleh kondisi proses pencucian serta kondisi pemanasan.

Peningkatan frekwensi pencucian disamping membersihkan fasa sisa pereaksi juga dapat menyempurnakan reaksi pembentukan *core* selama proses pemanasan. Kondisi vakum selama pemanasan dapat mengendalikan pembentukan oksida Fe dini pada permukaan *core*. Pemanasan juga mendorong pembentukan fasa minor FeB dan Fe₂B yang cenderung meningkat dengan meningkatnya waktu pemanasan dan menurunkan sifat magnetik. Pada tahapan oksidasi dengan *TMNO*, selain pembentukan lapisan *shell* oksida Fe yang terkendali sehingga diperoleh *shell* oksida Fe yang lebih tipis dan homogen setelah proses oksidasi pada permukaan *core* Fe, juga terjadi proses reduksi fasa minor tersebut menjadi fasa Fe dan memberikan peningkatan sifat magnetik.

Karakteristik optimal nanopartikel dengan ukuran kristalin ~ 8 nm dalam partikel *core* Fe berukuran < 30 nm dan *shell* oksida Fe setebal ~ 3 nm dengan magnetisasi saturasi $M_s \sim 130$ emu/gram diperoleh pada proses sintesis dengan pencucian 15x diikuti pemanasan 4 jam.

DAFTAR ACUAN

- GUANDONG ZHANG, YIFENG LIAO, IAN BAKER, Materials Science and Engineering C, 30 (2010) 92-97
- [2]. KYOUNGHEE SOHN, SUNG WOOK KANG, SAMYOUNG AHN, MYUNGWU WOO and SEONG-KOO YANG, *Environ. Sci. Technol.*, 40 (2006) 5514-5519
- [3]. C.-B. WANG, W.-X. ZHANG, *Environ. Sci. Technol.*, **31** (1997) 2154-2156
- [4]. XIAO-QIN LI, DANIEL W. ELLIOTT and WEI-XIAN ZHANG, *Critical Reviews in Solid State and Materials Sciences*, **31** (2006) 111-122
- [5]. MINGDE FAN, PENG YUAN, JIANXI ZHU, TIANHU CHEN, AIHUA YUAN, HONGPING HE, KANGMIN CHEN and DONG LIU, Journal of Magnetism and Magnetic Materials, 321 (2009) 3515-3519
- [6]. J.H. JANG and H.B. LIM, *Microchemical Journal*, **94** (2010) 148-158
- [7]. LIRONG LU, ZHIHUI AI, JINPO LI, ZHI ZHENG, QUAN LI and LIZHI ZHANG, *Crystal Growth & Design*, **7** (2) (2007) 459-465
- [8]. KIMBERLEY SUNG, IAN BAKER, Synthesis and Magnetic Heating of Iron Core/Iron Oxide Shell Nanoparticles, Darmouth: Center for Nanomaterials Research, (2007)
- [9]. GRACE TJ. SULUNGBUDI, MUJAMILAH dan ARI HANDAYANI, Jurnal Sains Materi Indonesia, 13 (3) Juni (2012)
- [10]. INTERNATIONAL CENTRE FOR DIFFRACTION DATA, PDF 06-0696, PDF 32-0463, PDF 39-1314, PDF 38-1022, PDF 82-1533, PDF 39-1346, (2007)
- [11]. GEORGE N. GLAVEE, KENNETH J. KLABUNDE, CHRISTOPHER M. SORENSEN and GEORGE C., HADJIPANAYIS, *Inorganic Chemistry*, **34** (1) (1995) 28-35
- [12]. S. P. GUBIN, YU A. KOKSHAROV, G. B. KHOMUTOV, G. YU YURKOV, Russian Chemical Reviews, 74 (6) (2005) 489-520
- [13]. AN-HUILU, E. L. SALABAS and FERDISCHÜTH, Angew. Chem. Int. Ed., **46** (2007) 1222-1244
- [14]. TAE-JONG YOON, HAKHO LEE, HUILIN SHAO and RALPH WEISSLEDER, *Angew. Chem. Int. Ed Engl.*, **50** (20) (2011) 4663-4666