
118

Jurnal Sains Materi Indonesia Vol. 16, No. 3, April 2015, hal. 118-125

Akreditasi LIPI No.: 395/D/2012
Tanggal 24 April 2012
ISSN: 1411-1098

Homepage: http://jusami.batan.go.id

Jurnal Sains Materi Indonesia

MODIFICATION OF MIXED STRUCTURE TiO
2

NANOPOROUS-
NANOTUBE ARRAYS WITH CdS NANOPARTICLE AND THEIR

PHOTOELECTROCHEMICAL PROPERTIES

Hedi Surahman, Supriyono,Yuni K Krisnandi and Jarnuzi Gunlazuardi
Departement of Chemistry-University of Indonesia

Kampus Baru UI Depok 12424
E-mail:hedi1171@ui.ac.id

Received: 21 October 2014 Revised: 13 February 2015 Accepted: 10 March 2015

ABSTRACT

MODIFICATION OF MIXED STRUCTURE TiO
2

NANOPOROUS-NANOTUBE ARRAYS
WITH CdS NANOPARTICLEAND THEIR PHOTOELECTROCHEMICALPROPERTIES. In this work,
a mixed structure TiO

2
with a top nanoporous layer and an underneath highly ordered nanotube arrays layer

(TNPs-NTAs) were prepared by anodic oxidation of Ti foil under controlled anodization time in an electrolyte
containing fluoride ion,water and ethylene glycol. CdS nanoparticles (NPs) was deposited onto the mixed
structure of TiO

2
by Successive Ionic Layer Adsorption and Reaction (SILAR) with an aim toward tuning the

photoelectrochemical performance to visible region. The morphology, elemental composition, crystal structure,
optical properties and photoelectrochemical performance of TNPs-NTs and CdS modified (CdS/TNP-NTAs)
samples were characterized by Field Emisi Scanning Electron Microscope (FESEM), Electron Dispersive
Spectroscopy (EDS), X-Ray Diffractometer (XRD), Diffuse Reflactance Spectroscopy (DRS) and
electrochemical working station respectively. The results indicate that CdS nanoparticles uniformly decorated
on top of surface and inner wall of TNPs-NTs sample. No clogging of CdS-NP at the mouth TNPs-NTAs was
observed. The CdS/TNP-NTs show an increasing in the visible light adsorption and photocurrent response.
Under white light illumination (9.93 mW/cm2), we found that the CdS/TNPs-NTAs have an optimum
photocurrent density of 1.16 mA/cm2 , corresponding to energy photoconversion efficiency of 9.75%, which
is 7 times higher than that of the bare TiO

2
(TNPs-NTAs). The increase of photocurrent is attributed to the

enhancement of charge separation efficiency and improved electron transport.

Keywords: TiO
2

Nanotubes, CdS Nanoparticle, Photoelectrohemical, SILAR, Photocurrent

ABSTRAK

MODIFIKASI STRUKTUR CAMPURAN TiO
2

NANOPORI-NANOTUBE DENGAN CdS
NANOPARTIKEL DAN SIFAT-SIFAT FOTOELEKTROKIMIANYA. Dalam pekerjaan ini, struktur
campuran TiO

2
dengan lapisan nanopori pada bagian atas dan lapisan nanotube pada bagian dibawahnya

(TNPs-NTAs) di preparasi dengan oksidasi anodik lempeng Ti dibawah kontrol waktu anodisasi dalam larutan
elektrolit yang mengandung ion fluorida, air dan etilen glikol. CdS nanopartikel (NPs) dideposisikan pada
struktur campuran TiO

2
menggunakan metode SILAR dengan tujuan mendapatkan kinerja fotelektrokimia pada

daerah sinar tampak. Morfologi, komposisi elemen, struktur Kristal, sifat optikal dan dan kinerja fotoelektrokimia
sampel TNPs-NT dan CdS/TNPs-NTAs dikarakterisasi dengan Field Emisi Scanning Electron Microscope
(FESEM), Electron Dispersive Spectroscopy (EDS), X-Ray Diffractometer (XRD), Diffuse Reflactance
Spectroscopy (DRS) dan peralatan elektrokimia. Hasil karakterisasi mengindikasikan bahwa CdS nanopartikel
terdekorasi secara seragam pada permukaan bagian atas dan dinding bagian dalam sampel TNPs-NTAs. Tidak
teramati adanya CdS nanopartikel yang menutupi mulut tabung TNPs-NTAs. CdS/TNPs-NTAs memperlihatkan
peningkatan adsorpsi pada daerah sinar tampak dan respon arus cahaya. Dibawah penyinaran sinar putih
(9.93 mW/cm2), CdS/TNPs-NTAs mempunyai densitas arus cahaya optimum sebesar 1.16 mA/cm2, yang
sebanding dengan nilai efisiensi fotokonversi energi 9.75% dan 7 kali lebih besar dibandingkan TNPs-NTAs.
Peningkatan arus cahaya dihubungkan dengan efisiensi pemisahan muatan dan transfer elektron.

Kata kunci: TiO
2

nanotube, CdS nanopartikel, Fotoelektrokimia, SILAR, Arus cahaya
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INTRODUCTION

In recent years, the issue of energy crisis and
environmental pollution problems has driven research-
ers to develop technologies that can generate clean en-
ergy alternative and renewable instead of fossil fuels.
The photocatalytic technology seems to be an effective
pathway for solving these problems, which was initi-
ated by Fujishima and Honda [1] in 1972 who reported
theuseof TiO

2
semiconductor photoanode for the pho-

tocatalytic water splitting. TiO
2

semiconductor is be-
coming increasing attractive for potential applications
in energy and environmental fields such as
photoelectrohemical (PEC) [2-5], photovoltaic [6-8] and
photocatalysis cells [9-10]. For these process of energy
conversion, TiO

2
has shown as a strong candidate ow-

ing to its excellent chemical stability, low cost, nontoxicity
and environment-friendly feature [2,6,9]. It has been
proven that nanostructure TiO

2
electrode have higher

photoelectrochemical activity than the bulk form of TiO
2

materials, since bulk TiO
2
suffers from a short diffusion

length [11-13]. TiO
2

nanostructures, particularly TiO
2

nanotubes arrays (TNTAs) which have one-dimensional
channel exhibits good oriented charge-transport prop-
erty and facilitate the separation of the photo excited
charges carriers [11-14]. Since Zwilling et al reported
the growth of TNTAs through the electrochemical an-
odization of Ti foil [15], many investigations to control
the tube length, morphology, orientation, wall thickness,
and pore diameter on TNTAs have been reported, by
adjusting the anodization condition such as anodiza-
tion voltage [16], electrolyte composition [17], and an-
odization time [18].At this time, TNTAs are widely used
as photocatalysts [9] and photanodes [5] to effectively
harvest sunlight.

However, photocatalytic activity of TiO
2
is limited

by its UV-responsive band gap of approximately 3.2 eV,
which can only be excited by UV radiation with a
wavelength below 390 nm. Therefore, only 5% of the
solar light can be utilized by pure TiO

2
. Tremendous

efforts have been taken to improve its visible light
harvesting ability including dye sensitization [19], doping
by metal and nonmetal [20-21], and sensitizing TiO

2
with

narrow band gap semiconductor such as CdS [22],
CdSe [23], and PbS [24]. CdS semiconductor is an efficient
visible light sensitizer for TiO

2
because it has a narrower

band gap (2,4 eV) and its conduction band level is 0.5 eV
more negative than that of TiO

2
, thus it is widely

employed in quantum-dot sensitized solar cell (QDSSCs)
[8] and photoelectrochemical cell to hydrogen
generation [25].

To date, many methods have been developed to
deposit CdS nanoparticles (NPs) on TNTAs such as
sequential chemical bath deposition (S-CBD) [26],
successive ionic layer adsorption and reaction (SILAR)
[25], electrodeposition [27], and using a bifunctional
organic linker [28]. Among them, SILAR method is the

most straightforward, and CdS-TNTAs prepared by this
method exhibited greatly enhanced photoactivities
under visible irradiation [25]. However, when a solution
of the CdS precursor is used for preparation of CdS
sensitizing TNTAs, the precipitation reaction is offently
taken place so sudden that lead to formation of large
agglomeration of CdS-NPs, which may block the tube’s
mouths. In addition, the precursor solution tends not to
penetrate fully in to the inner side of the TNTAs because
of surface tension of the solution [29]. As a result, both
the inside tube wall surface and the bottom of the tubes
are not fully covered by CdS-NPs, which definitely reduce
the photocatalytic performance of photoelectrochemical
and solar cells. An efforts to avoid the clogging of the
CdS-NPs at the nanotube mouth have been reported.
Xie et al.[29] and Wang et al.[30] developed a
ultrasonication-assisted sequential chemical bath
deposition (S-CBD) method and Liu et al. [31] prepared
a TNTAs photocatalyst with large intertube spacing
and pore size.

In the present work, a mixed structure of TiO
2

with a top nanoporous layer and an underneath highly
ordered nanotube layer (TNPs-NTAs) decorated with
dispersed CdS-NPs were prepared. The TNPs-NTs were
prepared by anodic oxidation Ti foil under control
anodization time. While CdS nanoparticles is deposited
onto mixed structure TiO

2
by successive ionic layer

adsorption and reaction (SILAR). Nanoporous layer
with large interporous spacing facilitates the deposition
of CdS-NPs on top surface and inner wall TNTAs
without clogging at the nanoporous mouth. The
photoelectrochemical properties and the stability of
modified CdS-TNPs-NTAs under visible light was
systematically studied and the results will be discussed.

EXPERIMENTAL METHOD

Preparation of TiO
2
NanotubeArrays

Prior to anodization, the Ti foils (0.2 mm thick,
99.6% purity) were degreased at room temperature by
sonicating in acetone and ethanol for 10 min, respectively,
then rinsed with deionized water and dried in air.
All anodization experiments were carried out in a
two-electrode electrochemical cell at room temperature.
Ti foils (4 cm x 1.5 cm x 0.02 cm) and stainless steel sheet
(5 cm x 1.5 cm x 0.02 cm) were used as the anode and
cathode, respectively. The distance between the two
electrodes is kept at 1.5 cm in all reported experiments.
Ethylene glycol solution containing 0.3 wt% NH

4
F and

2 vol% H
2
O was used as electrolyte. The anodization

process was performed with a Direct Current (DC) power
supply for 30 minutes. The anodization voltage was
40 V in this study. After electrochemical treatment, the
samples were rinsed with deionized water and dried in
air. Then the obtained TNTAs were annealed at 450 0C
for 2 hours with a heating rate of 2 0C/minutes.
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Preparation of CdS-Sensitized TNTAs by
SILAR Method

The CdS-sensitized TNTAs were fabricated by
SILAR method. The TNTAs electrode was successively
immersed, 1 minute for each step, in 0.05 M Cd(NO

3
)

2
in

ethanol, pure ethanol, 0.05 M Na
2
S in methanol, and pure

methanol. After methanol washing the electrode was
dried in air. This whole procedure is reffered to as one
full coating cycle. This immersion procedure was repeat
for 5, 8, and 10 cycles. The resulting yellow film were
dried and then annealed under a nitrogen (N

2
)

atmosphere at 400 0C for 1 hour.

Material Characterization

The morphologies of the samples were observed
using a Field Emission Scanning Electron Microscope
(FE-SEM, Inspect f50, FEI). The element composition
was analyzed by electron dispersive spectroscopy
(EDAX, Appolo X). The crystalline structure of the
samples was identified by X-ray diffractometer using
Cu Kα radiation (λ=1.5478 A0) (XRD, PhilipsAnalytical).
The photoabsorpsion properties were recorded by an
UV-Vis spectrophotometer (UV-Vis 2450, Shimadzu).

Photoelectrochemical Measurements

Photoelectrochemical measurement were
carried out in a three-electrode configuration with the
as-prepared sample as the working electrode, Pt mesh
as the counter electrode, and saturated Ag/AgCl as the
reference electrode in 0.1 M Na

2
S aqueous electrolyte.

The photoelectrochemical cell consisting of a glass tube
with a 2.5 cm diameter and height 5 cm is made of quartz.
A computer controlled potentiostat (eDaq 401) is
employed to control the external bias and to record the
photocurrent generated. Full spectrum illumination was
provided with a 150 W metal halide lamp (Philips Master).
The samples are anodically polarized at a scan rate of
25 mV/s under illumination, and the photocurrent is
recorded. The photocurrent density versus potential
(j-V) and photocurrent density versus time (j-t) curves
of working electrode was carried out by the linier sweep
voltametry (LSV) and multy pulsed amperometry (MVA)
methods respectively.

RESULTS AND DISCUSSION

Characterization of the Material

Figure 1 shows the FESEM image of the TiO
2

films prepared by the anodization in an electrolyte
solution containing of 0.3 wt % NH

4
F and 2 wt % water

in ethylene glycol. Anodizatian voltage was 40 V.
Figure 1(a) is the TNPs-NTs which was anodized for 30
minutes, it can be seen that the mixed structure of TiO

2

with a top nanoporous layer and an underneath highly
ordered nanotubes layer (TNPs-NTs) have been
observed. The mixed structure is attributed to the fact
that the thin nanoporous layer on the top surface of
TNTAs is not completely dissolved during the

Figure 1. FESEM image of top surface TNPs-NTAs
(a). top surface CdS/TNPs-NTAs and high magnification
image, (b). top surface TNTAs, (c). top surface
CdS/TNTAs and (d). with inset are cross section views
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preparation process (30 minutes) in this experiment.
While for the anodizing process for 45 minutes, the
highly ordered titania nanotubes is completely formed
from the top surface to the bottom surface (Figure 1(c)).
Based on the TNTAs growth mechanism, anodization
process is a competition of electrochemical
oxidation (Equation (1)) and chemical dissolution
(Equation (2)) [17].

Ti + 2H
2
O → TiO

2
+ 4H+ + 4e- ........... (1)

TiO
2

+ 6F- + 4H+ → TiF
6

2- + 2H
2
O ....... (2)

At the initial stage of the anodization, the barrier layer is
formed (Eq.1) and it is followed by the appearance of
small pits and pore growth in the oxide layer through
chemical dissolution reaction (Equation 2). With
additional anodization time, the porous structure is
converted into a nanotubular structure. Figure 1(b)
shows FESEM image of CdS/TNPs-NTs (8cycles), it can
be seen that the CdS nanoparticle is uniformly
distributed on the top surface nanoporous layer and in
the tubes of TiO

2
nanotubes layer. Nanoporous layer

with large interporous spacing facilitates the formation
of CdS-NPs from Cd2+ and S2- precursors on top surface
and inner wall TNTAs without clogging at the
nanoporous mouth. While at the TiO

2
nanotube layers,

CdS aggregates are clearly observed on the surface of
TNTAs layer (Figure 1(d)). In the latter case, the CdS
precursor solution could not penetrate deeply into the
TNTAs because of the surface tension of the solution,
resulting an aggregation at the entrances of the
nanotubes [29].

XRD was conducted to characterize the phase
structure of both pure TNPs-NTAs and CdS/TNPs-NTAs
samples. The phase of TNPs-NTAs was mainly
composed of anatase phase after annealing at 450 0C for
2 hours (Figure 2(a)). As shown in Figure 2(b), the peak
located at 26.40 and 43.80 were correspondingly attributed
to (002) and (110) of the hexagonal CdS (JCPDS
No.41-1049), indicating that the deposited CdS layer was
hexagonal crystal system.

EDX quantitative analysis of the CdS/TNPs-
TNTAs gave an approximately 1:1 stoichiometric ratio
of Cd to S (Cd, 2.62%; S, 2.70%), as expected for the
format of CdS compound (Figure 3(b)). The atomic ratio
of oxygen to Ti (66.39% ; 33.61%)was exactly equal to 2
that was consistent with the stochiometric formula of
TiO

2
(Figure 3(a)).

Figure 4(a) shows the diffuse reflectance
absorption spectra of the unmodified and CdS
modified samples. TNPs-NTAs without CdS
nanoparticles could only absorb UV light below the
wavelength of 400 nm and the calculation results using
Kubelka-Munk equation shows the band gap value was
3,22 eV (Figure 4(b)), corresponding to the band gap
value of anatase phase TiO

2
. For the CdS modified

samples with variations in the number of SILAR cycles,

a broad absorption band between 400 and 600 nm
indicates that the deposition of CdS NPs significantly
improves the visible-light absorption property of the
TNTAs. The band-gap value of CdS modified samples
with 5, 8, and 10 SILAR cycles have a similar values of
2.2eV.

Figure 2. XRD diffractograms of samples: (a). pure TiO
2
,

and (b). CdS/TiO2, the samples were annealed at
450 0C for 2h

Figure 3. EDX spectrum and the corresponding element
constant of (a) pure TiO

2
and (b). CdS/TNPs-TNTAs
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Photoelectrochemical Properties

Figure 5(a) shows characteristics of the
photocurrent density versus potential curve (I-V curve)
for the TNps-NTAs and CdS/TNPs-NTAs electrode
prepared at different deposition cycles. For both the
unmodified TiO

2
and CdS modified TiO

2
electrodes,

the current was observed negligible at dark condition,
while under illumination the current density of
electrodes were significantly observed. The TNPS-NTAs
electrode exhibited a photocurrent of 0.126 mA/cm2 at
0V versus Ag/AgCl, and increased in the presence of
CdS, indicating a contribution by the CdS sensitizer. The
Maximum value of the photocurrent density of the
CdS/NPs-NTAs electrodes depends on the deposition
cycle. The CdS/NPs-NTAs electrode which was prepared
by 8 deposition cycles have an optimum photocurrent
density of 1.16 mA/cm2, which is nearly 9 times higher
than the pristine TiO

2
nanotubes electrode. Increasing

deposition cycle results in formation of new crystallites,
and crystallite growth. As reported by Kamat et al [11],
large nanocrystallite are less efficient in transferring
electron than their smaller counterpart. The results of
Kalanur et. al [32 ], show that the increased amount of
CdS layer may slow down the electron injection process
and an electron will have more chance to be trapped or
recombined with holes within CdS layer or alternatively
to be captured by an electron acceptor in the

electrolyte. Therefore with increasing deposition
cycle, the photocurrent first increase, with CdS
sensitization of the TiO

2
surface, and then decrease as

the CdS particle size continuous to increase. As shown
in Figure 5(a), the bare TiO

2
electrode have the open

circuit potential (OCP) around -0.718 V and after Cds
sensitization by 8 SILAR cycles, this value shifted to
around -1.012 V, which indicates a shift in Fermi level to
more negative potential as a result of the coupling
between TiO

2
and CdS in the composite system. The

more negative potential of Fermi level can enhance of
the charge separation and translating into an
improvement of the photocurrent response. In the
photoelectrochemical system, a higher photocurrent
would correspond to a higher efficiency of the PEC
device for solar hydrogen generation, as the current is
related to the electron needed to reduce the H+ ions into
H

2
at the counter cathode.

Figure 5(b) shows the transient photocurrent
response of the TNPs-NTAs and CdS/TNPs-NTAs
electrodes, which were measured by switching a white
light source on and off in 0.1 M Na

2
S at an applied

potential of 0 V in the one-compartment PEC cell by multi
pulsed amperometry method. The duration of the light

Figure 4. (a). Diffuse reflectance absorption spectra
and (b) band gap energy of the unmodified and CdS
modified samples

(b)

(a)

Figure 5. Photoelectrochemical properties of the TNPs-
NTAs and CdS/TNPs-NTAs electrodes (a). j-V curves,
(b). time-dependent photocurrents and cycle stability test
measured with the potential bias of 0 V versus Ag/AgCl
under on-off light irradiation

(a)

(b)
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pulse was set at 25 s, followed by dark current
measurement for 15 s. As shown in Figure 5(b), the
current value is nearly 0 mA/cm2 in dark condition while
the photocurrent rapidly rises to a constant value upon
illumination. All photocurrent patterns of TiO

2
samples

are highly reproducible and good stability for several
light on-off cycles. This result indicates that the CdS
modified TiO

2
electrodes prepared by SILAR exhibit

good photo response, fast charge transfer and stable
photocurrent response.

Figure 6 shows the corresponding photo
conversion efficiency (η) of light energy to chemical
energy calculated using the following Equation (5) [25]:

η(%)=j
p
[(E0

rev
- E

app
)/I

0
]x100 ..................... (5)

where :
j
p

= The photocurrent density (mA/cm2)
j
p
E0

rev
= The total power output

j
p
E

app
= The electrical power input

I
0

= The power density of incident light

E0
rev

is the standard reversible potential of 1.23 V/NHE
that is the potential corresponding to the Gibbs free
energy change per photon in the water slitting reaction.
The applied potential is E

app
=E

meas
- E

aoc
, where E

meas
is

the electrode potential (vs Ag/AgCl) of the same
working electrode under open circuit condition in the
same electrolyte. The pure TiO

2
such as TNPS-NTAs

electrode achieved a photoconversion efficiency of
1.31%. The photoconversion efficiency increased to
9.75% when TiO

2
sensitized by 8 cycles of CdS. The

photoavtivity value of 9.75% is a 7-fold enhancement
compared with that of the pure TiO

2
.

CONCLUSION

We have demonstrated that the SILAR
deposition method of CdS onto a mixed structure
TiO

2
electrode with a top nanoporous layer and an

underneath highly ordered nanotube layer (TNPs-NTAs)
was sucessfully achieved. This method offers a uniform

distribution and facilitates the deposition of CdS
nanoparticles (NPs) on top surface and inner wall
TNPs-NTAs sample without clogging of CdS-NPs
at the TiO

2
nanoporous mouth. CdS modified TiO

2

electrodes prepared by SILAR exhibit good photo
response, fast charge transfer and stable photocurrent
response. In comparison with the pure TiO

2

(TNPs-NTAs), the as-prepared CdS/TNPs-NTAs with
8 SILAR cycles shows a 7-fold enhancement in
photoconversion efficiency due to narrowing its band
gap, hence extend to the visible light response, which is
attractive and feasible for its potential application in
photocatalytic water splitting.
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