Pemisahan Cerium dari Logam Tanah Jarang Hidroksida Melalui Kalsinasi dan Pelindian Menggunakan HNO₃ Encer

Cerium Separation from Rare Earth Hydroxide by Calcination and Leaching Method Using Dilute HNO₃

Kurnia Trinopiawan¹*, Maria Veronica Purwani², Mutia Anggraini¹, Riesna Prassanti¹

¹Pusat Teknologi Bahan Galian Nuklir-BATAN, Jl. Lebak Bulus Raya No. 9, Ps. Jumat, Jakarta, Indonesia, 12440 ²Pusat Teknologi Akselerator dan Proses Bahan-BATAN, Jl. Babarsari, Yogyakarta, Indonesia, 55281 E-mail : kurnia.t@batan.go.id

> Naskah diterima: 23 April 2019, direvisi: 16 Mei 2019, disetujui: 27 Mei 2019 DOI: <u>10.17146/eksplorium.2019.40.1.5411</u>

ABSTRAK

Aplikasi Logam Tanah Jarang (LTJ) banyak digunakan di berbagai bidang yang berhubungan dengan modernisasi. Hal ini menyebabkan banyak perusahaan mengembangkan teknik pengolahan untuk mengekstraksi LTJ dari deposit mineral tanah jarang. Pengolahan LTJ hidroksida menjadi cerium oksida, lanthanum oksida dan konsentrat neodimium telah dilakukan oleh PSTA-BATAN bekerjasama dengan PTBGN-BATAN. Setelah dilakukan kajian keekonomian, ternyata penggunaan asam nitrat pekat pada proses pelarutan cerium meyebabkan pemakaian ammonia berlebih. Oleh karena itu, inovasi proses perlu dilakukan menggunakan metode kalsinasi dan pelindian hasil kalsinasi dengan HNO₃ encer. Penelitian ini bertujuan untuk mengetahui efektifitas proses kalsinasi dan pelindian dengan HNO3 encer. Kalsinasi pada suhu 1000°C dengan parameter yang diamati adalah waktu kalsinasi, konsentrasi HNO3, dan tingkat pelindian. Dari hasil penelitian diketahui bahwa kalsinasi dapat mengkonversi LTJ hidroksida menjadi LTJ oksida. Semakin lama waktu kalsinasi, LTJ oksida yang terbentuk semakin sempurna. Proses kalsinasi selama tiga jam meningkatkan kadar La, Ce, dan Nd yang semula 7,80%; 28,00%; dan 15,11% menjadi 12,69%; 45,50%; dan 24,45%. Kinetika reaksi kalsinasi LTJ hidroksida mengikuti proses reaksi kimia dengan persamaan y = 0.3145x + 0.0789 dan $R^2 = 0.9497$. Kemudian, LTJ oksida hasil kalsinasi direaksikan dengan HNO₃ encer. Semakin besar konsentrasi HNO₃ pada berbagai tingkat pelindian, efisiensi pelindian La dan Nd semakin besar sedangkan Ce tidak dapat dilakukan pelindian atau efisiensi pelindian mendekati nol. Proses pelindian optimum pada kondisi pelindian tiga tingkat menggunakan 1 M HNO₃. Kinetika reaksi pelindian mengikuti model susut inti reaksi kimia permukaan dengan persamaan y = 0.1732x - 0.2088 dan $R^2 = 0.9828.$

Kata kunci: logam tanah jarang, kalsinasi, pelindian, HNO3

ABSTRACT

Application of Rare Earth Elements (REE) uses broadly in various fields related to modernization. It causes many companies are developing processing techniques to extract REE from rare earth mineral deposits. REE hydroxide processing into cerium oxide, lanthanum oxide, and neodymium concentrates has conducted by PSTA-BATAN in collaboration with PTBGN-BATAN. The previous economic study issued in excessive ammonia caused by the use of concentrated nitric acid in the cerium dissolution process. Therefore, process innovation is necessary to do by calcination and leaching methods using dilute HNO_3 . This research aims to determine the effectiveness of the calcination and leaching process with dilute HNO₃. Calcination conducted at 1000°C temperatures with the observing parameters is calcination time, HNO_3 concentration, and leaching rate. The result of the study is that calcination can convert REE hydroxide into REE oxide. The longer calcination time, the easier the REE oxide formed. The three hours calcination process enhances the concentration of La, Ce, and Nd from 7.80%, 28.00%, and 15.11% to 12.69%, 45.50%, and 24.45% respectively. The kinetic reaction of the RE(OH) a calcination reaction follows a chemical reaction process with the equation y = 0.3145x + 0.0789 and R2 = 0.9497. Then, REE oxide from calcination reacted with dilute HNO₃. The higher the concentration of HNO₃ at various leaching levels, the better the leaching efficiency of La and Nd while Ce is impossible to leach or the leaching efficiency is close to zero. The optimum leaching process on three levels of leaching conditions is using 1 M HNO3. The leach reaction kinetics follows the core shrinkage model of the surface chemical reaction with the equation y = 0.1732x - 0.2088 and R2 = 0.9828.

Keywords: rare earth elements, calcination, leaching, HNO₃

PENDAHULUAN

Logam Tanah Jarang (LTJ) atau rare earths elements (REE) adalah kelompok logam unik yang dianggap sebagai elemen paling kritis dan sangat berharga untuk aplikasi khusus di banyak teknologi modern. Dalam beberapa tahun terakhir, LTJ telah menjadi topik penting yang menarik dalam karena pasokan industri logam global berkurang sementara permintaan semakin banyak [1]. Aplikasi LTJ di berbagai bidang berhubungan dengan modernisasi, seperti magnet green energy, kinerja tinggi, konsumsi pencahayaan dan peralatan medis, serta industri tradisional, termasuk kaca, keramik, dan katalis [2]. Hal ini menyebabkan banyak perusahaan mengembangkan teknik pengolahan untuk mengekstraksi LTJ dari deposit mineral tanah jarang [3].

Reklamasi atau proses yang digunakan untuk memperoleh kembali LTJ dari *end-oflife products* dengan daur ulang baterai, fosfor, dan magnet permanen (penambangan perkotaan) [4]. Salah satu contohnya adalah kelompok mineral apatit (terutama fluorapatit) yang umumnya ditambang untuk produksi asam fosfat dalam industri pupuk [5–7].

Mineral monasit mengandung sejumlah LTJ yang signifikan dan oleh karena itu pengolahan bijih monasit untuk LTJ lebih menonjol baru-baru ini [7]. Pengolahan deposit monasit seringkali memerlukan tahap *pre-leach* sebelum tahap digesti asam pada suhu tinggi untuk mengubah LTJ-fosfat menjadi LTJ-sulfat yang larut dalam air [8].

Pasokan LTJ pasar dunia sebagian besar berasal dari Cina, yang dihasilkan dari pengolahan tanah liat ionik dan konsentrat mineral kelas tinggi seperti bastnasit, monasit, dan *xenotime* [10, 11]. Dalam beberapa tahun terakhir, indeks risiko pasokan yang telah ditetapkan untuk LTJ oleh sejumlah negara relatif tinggi [11]. Konsentrat mineral yang lebih rendah nilai ekonominya tidak diminati dalam produksi LTJ. Untuk memenuhi tuntutan sumber daya, diperlukan alternatif penerapan metodologi pemisahan baru.

Pada tahun 2015, Pusat Teknologi Akselerator dan Proses Bahan, Badan Tenaga Nuklir Nasional (PSTA-BATAN) telah menyusun dokumen Metallurgical Test Work Conceptual Design Pilot dan Plant pengolahan LTJ hidroksida menjadi Ce oksida, La oksida, dan konsentrat Nd. LTJ hidroksida merupakan hasil olah monasit yang mengandung unsur-unsur LTJ, yaitu Ce, La, Nd, Pr, Y, Sm, dan Gd [12, 13].

Pada tahun 2016, dilakukan pengadaan peralatan dan instalasi menjadi sebuah *pilot plant* lengkap dengan perpipaan dan instrumentasi. *Pilot plant* yang berlokasi di PSTA-BATAN Yogyakarta ini dilengkapi dengan instalasi pengolahan limbah. Pada tahun 2017, PSTA-BATAN telah melakukan komisioning *pilot plant* dan validasi produk dengan bahan baku LTJ hidroksida dari PT. Timah dan Pusat Teknologi Bahan Galian Nuklir (PTBGN), BATAN.

Tahapan proses pilot pada plant Pengolahan LTJ hidroksida menjadi Ce oksida, La oksida, dan konsentrat Nd oksida sangat panjang sehingga diperlukan peralatan dan bahan kimia yang cukup banyak. Proses pembuatan Ce, La, dan konsentrat Nd hidroksida melalui proses pelarutan dan oksidasi menggunakan asam nitrat pekat panas dan pengendapan dengan amonia. Setelah dilakukan kajian keekonomian, ternyata penggunaan asam nitrat pekat menyebabkan pemakaian amonia yang berlebih sehingga mengurangi kelayakan

64

dalam investasi. Oleh karena itu, perlu dilakukan inovasi proses dalam rangka pengurangan dalam penggunaan bahan kimia sehingga diharapkan akan menarik ketika dilakukan investasi. Untuk mengurangi bahan kimia pada proses pemisahan Ce, La, dan Nd oksida dari LTJ hidroksida dilakukan dekomposisi termal membentuk LTJ oksida. Dalam bentuk oksida, Ce dan logam tanah jarang lainnya (La, Nd, Pr) mempunyai sifat yang berbeda ketika dilarutkan ke dalam asam nitrat dan asam klorida encer. La, Nd, Pr oksida dapat larut sedangkan Ce oksida tidak dapat larut sehingga akan terjadi pemisahan dan pemurnian. Masing-masing LTJ oksida dalam oksida (RE_2O_3) mempunyai sifat kelarutan yang berbeda dalam asam encer terutama antara Ce oksida dengan oksida yang lain. Dengan demikian, Ce oksida dapat dipisahkan dengan oksida yang lain ketika dilakukan pelindian. Proses pelindian atau pencucian RE₂O₃ dengan asam encer akan mengurangi bahan kimia sehingga diharapkan dapat meningkatkan kelayakan ekonomi untuk diterapkan dalam skala industri.

Penelitian ini bertujuan untuk mengetahui efektifitas proses kalsinasi dan pelindian dengan HNO₃ encer pada pemisahan cerium dan logam tanah jarang lainnya (La, Nd).

TEORI

Tahapan dalam pembuatan Ce, La dan konsentrat Nd oksida dari LTJ hidroksida dilakukan melalui kalsinasi dan pelindian. Tahapan proses yang akan dilakukan dapat dilihat pada Gambar 1. Pada proses kalsinasi, LTJ hidroksida atau RE(OH)₃ dipanaskan pada suhu tinggi. Reaksi dekomposisi termal RE(OH)₃ adalah sebagai berikut :

Gambar 1. Blok diagram pengolahan REOH menjadi Ce oksida, La oksida dan konsentrat Nd oksida melalui kalsinasi dan pelindian.

Parameter suhu dan waktu sangat berpengaruh pada mekanisme reaksi yang terjadi. Pembuatan CeO₂ yang terbaik melalui proses kalsinasi Ce oksalat dan Ce hidroksida. Kalsinasi umumnya terjadi pada suhu 1.000–1.900°C [13] sedangkan kalsinasi Ce hidroksida dan cerium oksalat dilakukan pada suhu 900°C selama 1 jam [14].

Setelah proses kalsinasi, tahapan pelindian. selanjutnya adalah Pelindian merupakan ekstraksi padat-cair. Reaksi pelindian yang terjadi bisa antara basa dengan asam dan asam dengan basa. Basa akan bereaksi dengan larutan asam membentuk garam dan [14]. Pelindian air dapat menggunakan berbagai asam, antara lain H₃PO₄, HCl, HClO₄ dan HNO₃ [16, 17].

Oksida La, Nd, Pr, dan Ce_2O_3 mempunyai sifat yang berbeda ketika dilakukan pelarutan atau pencucian dengan HNO₃ atau HCl encer. Oksida La₂O₃ dapat larut sedangkan Ce2O3 sedikit larut. Reaksi yang terjadi pada pencucian atau pelarutan memakai HNO3 adalah:

 $RE_2O_3 + 6HNO_3 \rightarrow 2RE(NO_3)_3 + 3H_2O \quad (2)$

Pemisahan Cerium dari Logam Tanah Jarang Hidroksida Melalui Kalsinasi dan Pelindian Menggunakan HNO₃ Encer Oleh: Kurnia Trinopiawan, dkk.

Pada penelitian ini, waktu kalsinasi REOH, konsentrasi atau molaritas HNO_{3} , dan waktu pelindian hasil kalsinasi dipelajari.

TATA KERJA

Bahan dan Alat

Bahan yang digunakan adalah LTJ hidroksida produk dari *pilot plant* pengolahan monasit PTBGN dan HNO₃ teknis. Sementara itu, peralatan yang digunakan antara lain: gelas ukur, timbangan, oven, tungku suhu tinggi (1.500°C), alat cetak logam SPECAC, spektrometer pendar sinar X (XRF) AMETEK tipe SPECTRO XEPOS 5.

Cara Kerja

<u>Kalsinasi</u>

Padatan LTJ hidroksida ditimbang sebanyak 150 gram kemudian dipanaskan pada suhu 1.000°C dalam tungku suhu tinggi selama waktu dengan variabel 1, 2, dan 3 jam. Setelah dingin, padatan ditimbang dan dianalisis dengan menggunakan metode XRF. Data analisis hasil digunakan untuk studi kinetika perhitungan kalsinasi menggunakan model kinetika Shrinking Core.

Pelindian

Padatan hasil kalsinasi ditimbang sebanyak 10 gram lalu dicuci dengan 25 ml HNO₃ dengan variasi molaritas 0,6–1 M dengan interval 0,1 M. Hasil pencucian atau pelarutan disaring atau difiltrasi. Padatan yang digunakan adalah Ce_2O_3 dan filtrat (La,Nd) (NO₃)₃. Padatan Ce_2O_3 dikeringkan. Filtrat dan padatan hasil pelindian dianalisis menggunakan XRF.

Kinetika Pelindian

Padatan hasil kalsinasi ditimbang sebanyak 30 gram lalu dicuci dengan 75 ml

HNO₃ dengan variasi molaritas 0,6–1 M dan interval 0,1 M. Pengambilan sampel dilakukan pada rentang waktu 5–25 menit dengan interval 5 menit. Sampel kemudian difiltrasi dan padatan hasil filtrasi dianalisis menggunakan XRF. Data analisis digunakan dalam studi kinetika menggunakan model *Shrinking Core*.

Analisis XRF

Sampel padatan dihaluskan hingga berukuran kurang dari 200 mesh, kemudian dikeringkan selama 1 jam pada suhu 105°C. Sampel diambil 5 gram dan dicampurkan dengan fluxana sebanyak 1 gram. Campuran dibentuk menjadi pelet dengan menggunakan alat cetak logam SPECAC. Pelet dianalisis menggunakan alat XRF dengan *Si-Drift Detector* (SDD) dan dilengkapi *software Turboquant II* untuk pengolahan data hasil analisis.

HASIL DAN PEMBAHASAN Kalsinasi

Pada kalsinasi LTJ hidroksida diperoleh persentase berat yang dinyatakan dengan persamaan:

$$\% Bhk = \frac{Bhk}{berat \ sebelum \ kalsinasi} x \ 100\%$$

dengan Bhk adalah berat hasil kalsinasi.

Hubungan antara waktu kalsinasi dengan persentase berat disajikan pada Gambar 2. Semakin lama waktu kalsinasi maka berat padatan hasil kalsinasi semakin berkurang karena dekomposisi menghasilkan gas H₂O. Setelah 3 jam proses kalsinasi, berat padatan tersisa 72,09% dari berat awal. Persentase penurunan berat selama waktu 1 jam terjadi sangat cepat tetapi hampir konstan pada waktu kalsinasi 2–3 jam. Pada waktu kalsinasi 3 jam sudah tidak terjadi penurunan berat sehingga unsur yang ada dalam padatan hanya dalam bentuk oksida.

Gambar 2. Hubungan antara waktu kalsinasi dengan persentase berat.

Setelah proses kalsinasi, pengaruh waktu kalsinasi terhadap perubahan kadar unsur memiliki hubungan seperti terlihat pada Gambar 3. Semakin lama waktu kalsinasi maka kadar unsur La. Ce maupun Nd semakin besar. Komposisi kadar senyawa dalam padatan juga mengalami perubahan. Kadar unsur LTJ semakin naik, sedangkan H₂O atau hidroksida yang terkandung dalam LTJ hidroksida semakin turun dan berubah menjadi uap H₂O yang mengacu pada reaksi kalsinasi selama (1).Waktu 3 iam menghasilkan kadar La = 10,82%, Ce = 38,84%, dan Nd = 20,96%.

Gambar 3. Hubungan antara waktu kalsinasi dengan kadar unsur.

Gambar 4 menunjukkan hubungan antara waktu kalsinasi dengan kadar senyawa. Kadar senyawa La, Ce, serta Nd semakin meningkat sementara kadar H₂O mengalami penurunan karena menguap. Pada saat kalsinasi mencapai waktu 1 jam, H₂O sudah menguap seluruhnya.

Gambar 4. Hubungan antara waktu kalsinasi dengan kadar senyawa.

Pelindian Hasil Kalsinasi LTJ Hidroksida untuk Pemisahan La, Nd, dan Ce

Pemisahan unsur La, Ce, dan Nd hasil kalsinasi LTJ hidroksida selama 3 jam dilakukan dengan pelindian menggunakan HNO3 dalam berbagai konsentrasi. Semakin besar konsentrasi HNO₃, pelindian semakin baik. Reaksi antara La oksida dan Nd oksida dengan HNO₃ semakin sempurna sehingga kadar La dan Nd dalam padatan semakin (Gambar 5 dan 6). menurun Dalam konsentrasi HNO₃ 1 M, kadar La menurun signifikan dari 7,31% menjadi secara mendekati 0% (Gambar 5) pada pelindian tingkat II dan La berada dalam filtrat. Kadar Nd hasil kalsinasi untuk umpan pelindian sebesar 8% berkurang menjadi 7% pada penggunaan HNO₃ 0,6 M dan menjadi 0,43% pada penggunaan HNO₃ 1 M (Gambar 6), hampir semua Nd ada dalam filtrat.

Sementara itu, bila La dan Nd berada dalam larutan atau filtrat, Ce tidak larut atau masih bereaksi dengan HNO₃ sehingga Ce masih tertinggal dalam padatan dan menyebabkan kadar Ce dalam padatan semakin meningkat. Kadar Ce dalam umpan pelindian semula 38,84% menjadi 77% pada penggunaan HNO₃ 0,6–1 M (Gambar 7).

Gambar 5. Hubungan konsentrasi HNO_3 dengan kadar La dalam padatan setelah pelindian pada berbagai tingkat pelindian (kadar La dalam umpan pelindian 13%).

Gambar 6. Hubungan konsentrasi HNO₃ dengan kadar Nd dalam padatan setelah pelindian pada berbagai tingkat pelindian (kadar Nd dalam umpan pelindian 8%).

Gambar 7. Hubungan konsentrasi HNO₃ dengan kadar Nd dalam padatan setelah pelindian pada berbagai tingkat pelindian.

Efisiensi pelindian La pada berbagai tingkat pelindian berhubungan dengan konsentrasi HNO₃. Pada tingkat pelindian I dan II, semakin besar konsentrasi HNO₃ efisiensi pelindian semakin besar. Namun, pada tingkat pelindian III sampai V, semakin besar konsentrasi HNO₃, efisiensi pelindian semakin menurun (Gambar 8). Efisiensi pelindian La pada setiap tingkat pelindian berkisar antara 5,11–24,54%. Bila dilihat hubungan antara tingkat pelindian dengan efisiensi pelindian La pada berbagai konsentrasi HNO₃, pelindian La efektif pada tingkat pelindian I–II (Gambar 9).

Gambar 8. Hubungan konsentrasi HNO₃ dengan efisiensi pelindian La pada berbagai tingkat pelindian.

Gambar 9. Hubungan tingkat pelindian dengan efisiensi pelindian La pada berbagai konsentrasi HNO_3 .

Efisiensi pelindian Nd pada tingkat pelindian I, II, dan III menunjukkan bahwa semakin besar konsentrasi HNO₃, efisiensi pelindian akan semakin besar. Namun, pada tingkat pelindian IV dan V, semakin besar konsentrasi HNO₃ efisiensi pelindian menjadi semakin menurun karena Nd sudah larut pada pelindian I–III (Gambar 10). Berdasarkan hubungan antara konsentrasi HNO₃, kadar Nd dan tingkat pelindian, terlihat bahwa pelindian Nd efektif pada tingkat pelindian I– III. Tingkat pelindian dapat ditambah ke IV dan V untuk menyempurnakan pelindian.

Gambar 10. Hubungan konsentrasi HNO₃ dengan efisiensi pelindian Nd pada berbagai tingkat pelindian.

Gambar 11. Hubungan tingkat pelindian dengan efisiensi pelindian Nd pada berbagai konsentrasi HNO₃.

Efisiensi kumulatif pelindian La, Ce, dan Nd merupakan jumlah efisiensi pelindian La, Ce dan Nd pada setiap tingkat (I–V). Semakin besar konsentrasi HNO₃, efisiensi kumulatif pelindian La dan Nd semakin besar (Gambar 12). Efisiensi kumulatif pelindian La lebih besar dibanding efisiensi kumulatif pelindian Nd. Sementara itu, pelindian Ce sama sekali tidak bisa dilakukan sehingga efisiensi kumulatif pelindian Ce mendekati 0 (nol). Komposisi padatan setelah dilakukan kalsinasi dan pelindian menunjukkan kadar La dan Nd semakin menurun sedangkan kadar Ce semakin meningkat (Gambar 13).

Gambar 12. Hubungan konsentrasi HNO₃ dengan efisiensi pelindian kumulatif La, Ce, dan Nd.

Padatan Hasil Proses

Gambar 13. Komposisi La, Ce, dan Nd pada padatan hasil proses.

Studi Kinetika Kalsinasi

Konversi α, didefinisikan dengan persamaan berikut:

$$\alpha = \frac{mo - m}{mo - mf} \tag{3}$$

dengan m adalah massa sampel pada waktu t; $m_0 = massa sampel pada waktu t = 0 atau$ massa sampel awal; dan $m_f = massa sampel$ akhir atau pada reaksi sempurna. Semakin lama waktu kalsinasi, konversi semakin besar. Namun, konversi sudah hampir konstan setelah waktu 2 jam (Gambar 14).

Gambar 14. Hubungan antara waktu kalsinasi dengan konversi.

Mekanisme yang terjadi pada kalsinasi akan mengikuti model-model matematik susut inti bentuk bola (*shrinking core sphere*) yang mengacu pada kontrol reaksi (reaction control) dan kontrol difusi abu (ash diffusion *control*) [17]. Jika proses kalsinasi dikendalikan oleh reaksi kimia, persamaan berikut dapat digunakan ini untuk menggambarkan kinetika proses kalsinasi [19–21]:

$$1 - (1 - \alpha)^{1/3} = k_1 t \tag{4}$$

Jika proses dikendalikan oleh difusi, model persamaan berikut dapat digunakan:

$$1-3 (1-\alpha)^{2/3} + 2 (1-\alpha) = -k_2 t$$
 (5)

Jika hubungan antara waktu dan $1 - (1 - \alpha)^{1/3}$ mendekati linier atau $R^2 = 1$, maka proses dikendalikan oleh reaksi kimia. Jika hubungan antara waktu dan $1-3(1-\alpha)^{2/3} + 2(1-\alpha)$ mendekati linier atau $R^2 = 1$, maka proses dikendalikan oleh difusi (Gambar 15)

Gambar 15. Hubungan antara waktu dengan $1-(1-\alpha)^{1/3}$ dan waktu dengan $1-3(1-\alpha)^{2/3}+2(1-\alpha)$.

Tabel 1 menyajikan persamaan model matematik dan linearitas mekanisme reaksi kimia dan difusi. Jika dilihat harga linearitasnya (R²) maka mekanisme proses kalsinasi dikendalikan oleh peristiwa kontrol difusi abu (*ash diffusion control*)

Tabel 1. Persamaan dan linearitas hubungan antara waktu t dan $f(\alpha)$.

Mekanisme	Ash Diffusion Control	Reaction Control	
Persamaan	y = 0.3145x + 0.0789	y = 0,3099x + 0.0695	
linearitas	$R^2 = 0,9497$	$R^2 = 0,9423$	

Kinetika Pelindian

Hubungan antara waktu pelindian dengan konversi disajikan pada Gambar 16. Semakin lama waktu pelindian maka konversi semakin besar dan semakin besar konsentrasi HNO₃ maka konversi pelindian semakin besar.

Gambar 16. Hubungan antara waktu pelindian dengan konversi.

Reaksi pelindian atau pelarutan padatcair dinyatakan dengan reaksi berikut:

a A cairan + b B solid
$$\rightarrow$$
 produk (6)

dengan a dan b = koefisien stoikiometri; A dan B masing-masing mewakili cairan (reaktan) dan padatan. Kinetika reaksi pelindian sering digambarkan dengan model susut inti. Menurut model ini, proses *pelindian* dikendalikan oleh difusi melalui film cairan, reaksi kimia permukaan, atau difusi melalui lapisan produk [22–24]. Jika pelindian dikendalikan oleh difusi melalui film cairan (*diffusion through the liquid film*), model persamaan susut inti dapat digambarkan sebagai berikut:

$$k_1 t = \alpha \tag{7}$$

Jika pencucian atau pelindian dikendalikan oleh reaksi kimia permukaan, model persamaan susut inti dapat digambarkan sebagai berikut:

$$k_{\rm r} t = 1 - (1 - \alpha)^{1/3} \tag{8}$$

Jika pencucian atau pelindian dikendalikan oleh difusi melalui lapisan produk, model persamaan susut inti dapat digambarkan sebagai berikut:

$$k_{d}t = 1 - \alpha (2/3) (1 - \alpha)^{2/3}$$
(9)

dengan α = konversi; k₁ = konstanta difusi melalui film cairan; k_r = konstanta reaksi kimia permukaan; k_d = konstana difusi melalui lapisan produk; dan t = waktu reaksi.

Ketika LTJ oksida dilarutkan dalam larutan HNO₃, partikel LTJ oksida (La dan Nd) dan HNO₃ akan bereaksi membentuk larutan LTJ nitrat. Dalam model tersebut, ketika reaksi dikendalikan oleh difusi melalui film cairan, hubungan persamaan garis antara α dengan waktu reaksi harus menjadi garis lurus dengan kemiringan k₁. Apabila reaksi dikendalikan oleh reaksi kimia permukaan, hubungan persamaan garis antara $1-(1-\alpha)^{1/3}$ dengan waktu reaksi harus menjadi garis lurus dengan kemiringan k_r (Gambar 17). Sementara bila reaksi dikendalikan oleh difusi melalui lapisan produk, hubungan persamaan garis antara $1-\alpha (2/3) - (1-\alpha)^{2/3}$ dengan waktu reaksi harus menjadi garis lurus dengan kemiringan k_d (Gambar 18). Model persamaan yang mengendalikan proses pelindian dapat dievaluasi melalui ketiga model tersebut. Hubungan antara waktu dengan α (*diffusion through the liquid film*) pada berbagai konsentrasi HNO₃ juga dapat dilihat pada Gambar 16. Gambar 17 menyajikan hubungan antara waktu dengan $1 - (1 - \alpha)^{1/3}$ (*surface chemical reaction*) pada berbagai konsentrasi HNO₃. Gambar 18 menunjukkan hubungan antara waktu dengan $1 - (2/3)\alpha - (1 - \alpha)^{2/3}$ (*diffusion through the product layer*) pada berbagai konsentrasi HNO₃.

Gambar 17. Hubungan antara waktu dengan $1-(1-\alpha)^{1/3}$ (*surface chemical reaction*) pada berbagai konsentrasi HNO₃.

Gambar 18. Hubungan antara waktu dengan $11 - (2/3) \alpha - (1 - \alpha)^{2/3}$ (*diffusion through the product layer*) pada berbagai konsentrasi HNO₃.

Data percobaan dari pelindian dianalisis berdasarkan model susut inti menggunakan persamaan (7), (8), dan (9) untuk menentukan parameter kinetik pelindian dan reaksi yang mengontrol. Data dinilai menggunakan nilai R^2 (Gambar 16–18 dan Tabel 2). Kisaran nilai R² untuk model difusi melalui film cairan antara 0,8076-0,9827; untuk model reaksi kimia permukaan antara 0,9368-0,985; dan untuk model difusi melalui lapisan produk antara 0,9306–0,9559. Nilai-nilai R² untuk model reaksi kimia permukaan rata-rata lebih tinggi dibandingkan dengan model yang lain. Oleh karena itu, model difusi melalui film cairan dan difusi melalui lapisan produk tidak mewakili langkah kendali proses. Dengan demikian, model kinetik reaksi permukaan yang digunakan untuk menggambarkan reaksi pelindian RE oksida menggunakan HNO3 encer.

Harga k_1 , k_r , dan k_d meningkat seiring dengan bertambahnya M HNO₃ karena reaksi

pelindian berlangsung lebih cepat (Tabel 3). Hubungan antara konsentrasi HNO₃ dengan k pada model difusi melalui film cairan mengikuti persamaan polinomial:

 $y = -0,008x^2 + 0,0599x + 0,0969$

dengan nilai $R^2 = 0,9193$.

Hubungan antara konsentrasi HNO_3 dengan k_r pada model reaksi kimia permukaan mengikuti persamaan:

$$y = -0,0008x^2 + 0,0123x + 0,1331$$

dengan nilai $R^2 = 0,9364$.

Hubungan antara konsentrasi HNO_3 dengan k_d pada model difusi melalui lapisan produk mengikuti persamaan:

 $y = -0,0006x^2 + 0,0058x + 0,0511$

dengan nilai $R^2 = 0,9239$.

HNO ₃	Diffusion Through the Liquid Film		Surface Chemical Reaction		Diffusion Through the Product Layer	
Conc.	$\alpha = kt$		$1 - (1 - \alpha)^{1/3} = k_{\rm r} t$		$1 - (2/3) \alpha - (1 - \alpha)^{2/3} = k_{\rm d} t$	
	y = kt		$y = k_{\rm r} t$		$y = k_{\rm d} t$	
	Equation	R^2	Equation	R^2	Equation	R^2
0,6 M	y = 0,144x - 0,168	0,9827	y = 0,144x - 0,168	0,9827	y = 0,0559x - 0,0893	0,9306
0,7 M	y = 0,1961x - 0,0101	0,8076	y = 0,1569x - 0,1172	0,9368	y = 0,0618x - 0,0668	0,9414
0,8 M	y= 0,2002x - 0,0887	0,9285	y= 0,1582x - 0,1838	0,9829	y = 0,0618x - 0,0957	0,9443
0,9 M	y = 0,2042x - 0,1028	0,9380	y = 0,1725x - 0,2192	0,9850	y = 0,0659x - 0,1056	0,9486
1 M	y = 0,2006x - 0,0748	0,9107	y = 0,1732x - 0,2088	0,9828	y = 0,0658x - 0,1008	0,9559

Tabel 2. Persamaan dan linearitas (R²) tiga model kinetika.

HNO ₃ Conc.	Diffusion through the liquid film	Surface chemical reaction	Diffusion through the product layer
	$k_1 (\mathrm{min}^{-1})$	$k_{\rm r}$ (min ⁻¹)	$k_{\rm d} ({\rm min}^{-1})$
0,6 M	0,1440	0,1440	0,0559
0,7 M	0,1961	0,1569	0,0618
0,8 M	0,2002	0,1582	0,0618
0,9 M	0,2042	0,1725	0,0659
1 M	0,2006	0,1732	0,0658

Tabel 3. Hubungan antara molaritas dengan nilai k₁, k_r, dan k_d.

KESIMPULAN

Cerium dapat dipisahkan dengan cara kalsinasi dan pelindian. Proses kalsinasi mengkonversi LTJ hidroksida menjadi LTJ oksida dengan waktu optimum selama 3 jam Kinetika reaksi kalsinasi mengikuti proses kimia melalui persamaan y = 0,3145x + 0,0789 dengan $R^2 = 0,9497$. Proses pelindian memisahkan Ce oksida dari Nd oksida dan La oksida (Ce₂O₃). Semakin besar konsentrasi HNO₃ pada berbagai tingkat pelindian maka La dan Nd yang terlarut semakin besar. Proses pelindian optimum didapat pada kondisi pelindian tiga tingkat menggunakan HNO₃ 1 M. Kinetika reaksi pelindian mengikuti model susut inti reaksi kimia permukaan dengan persamaan y = 0.1732x - 0.1732x $0.2088 \text{ dengan } \mathbb{R}^2 = 0.9828.$

DAFTAR PUSTAKA

- [1] EC European Commission, "Report of the Ad-Hoc Working Group on Defining Critical Raw Materials," in *Report on Critical Raw Materials for the EU*, Brussels, 2014, p. 41.
- [2] S. Massari and M. Ruberti, "Rare Earth Elements as Critical Raw Materials: Focus on International Markets and Future Strategies," *Resour. Policy*, vol. 38, no. 1, pp. 36–43, 2013.
- [3] E. Jorjani, A. H. Bagherieh, and S. C. Chelgani, "Rare Earth Elements Leaching from Chadormalu Apatite Concentrate: Laboratory Studies and Regression Predictions," *Korean J. Chem. Eng.*, vol. 28, no. 2, pp. 557–562, 2011.
- [4] C. Tunsu, M. Petranikova, M. Gergorić, C. Ekberg, and T. Retegan, "Reclaiming Rare Earth

Elements from End-of-life Products: A Review of The Perspectives for Urban Mining Using Hydrometallurgical Unit Operations," *Hydrometallurgy*, vol. 156, pp. 239–258, 2015.

- [5] L. Wang, Z. Long, X. Huang, Y. Yu, D. Cui, and G. Zhang, "Recovery of Rare Earths from Wet-Process Phosphoric Acid," *Hydrometallurgy*, vol. 101, no. 1–2, pp. 41–47, 2010.
- [6] A. Didier, B. Putlitz, L. P. Baumgartner, A.-S. Bouvier, and T. W. Vennemann, "Evaluation of Potential Monazite Reference Materials for Oxygen Isotope Analyses by SIMS and Laser Assisted Fluorination," *Chem. Geol.*, vol. 450, pp. 199–209, 2017.
- [7] F. Sadri, F. Rashchi, and A. Amini, "Hydrometallurgical Digestion and Leaching of Iranian Monazite Concentrate Containing Rare Earth Elements Th, Ce, La and Nd," *Int. J. Miner. Process.*, vol. 159, pp. 7–15, 2017.
- [8] N. Krishnamurthy and C. K. Gupta, *Extractive Metallurgy of Rare Earths*, 2nd Editio. Boca Raton: CRC Press, 2015.
- [9] K. Binnemans, P. T. Jones, B. Blanpain, T. Van Gerven, Y. Yang, A. Walton, and M. Buchert, "Recycling of rare earths: a critical review," *J. Clean. Prod*, vol. 51, pp. 1–22, 2013.
- [10] Z. Chen, "Global Rare Earth Resources and Scenarios of Future Rare Earth Industry," *J. Rare Earths*, vol. 29, no. 1, pp. 1–6, 2011.
- [11] T. Dutta, K.-H. Kim, M. Uchimiya, E. E. Kwon, B.-H. Jeon, A. Deep, and S.-T. Yun, "Global Demand for Rare Earth Resources and Strategies for Green Mining," *Environ. Res.*, vol. 150, pp. 182–190, 2016.
- [12] L. Berry, J. Galvin, V. Agarwal, and M. S. Safarzadeh, "Alkali Pug Bake Process for The Decomposition of Monazite Concentrates, Minerals Engineering," *Miner. Eng.*, vol. 109, pp. 32–41, 2017.
- [13] B. Bulfin, A. J. Lowe, K. Keogh, B. Murphy, O. Lubben, S. A. Krasnikof, and I. Shvets, "Analytical Model of CeO2 Oxidation and Reduction," J. Phys. Chem., vol. 46, pp. 24129–

24137, 2013.

- [14] R. D. Abreu and C. A. Morais, "Purification of Rare Earth Elements from Monazite Sulphuric Acid Leach Liquor and The Production of Highpurity Ceric Oxide," *Miner. Eng.*, vol. 23, no. 6, pp. 536–540, 2010.
- [15] K. Stone, A. M. T. S. Bandara, G. Senanayake, and S. Jayasekara, "Processing of Rare Earth Phosphate Concentrates: A comparative Study of Pre-Leaching With Perchloric, Hydrochloric, Nitric and Phosphoric Acids and Deportment of Minor/major Elements," *Hydrometallurgy*, vol. 163, pp. 137–147, 2016.
- [16] B. Ma, W. Yang, B. Yang, C. Wang, Y. Chen, and Y. Zhang, "Pilot-scale Plant Study on The Innovative Nitric Acid Pressure Leaching Technology for Laterite Ores," *Hydrometallurgy*, vol. 155, pp. 88–94, 2015.
- [17] A. Amiri, G. D. Ingram, A. V Bekker, I. Livk, and N. E. Maynard, "A Multi-stage, Multireaction Shrinking Core Model for Self-Inhibiting Gas–Solid Reactions," *Adv. Powder Technol.*, vol. 24, pp. 728–736, 2013.
- [18] T. Wanjun, Y. Liu, Y. Xi, and W. Cunxin,

"Kinetic Studies of The Calcination of Ammonium Metavanadate by Thermal Methods," *Ind. Eng. Chem. Res.*, vol. 43, no. 9, p. 2054–2059, 2004.

- [19] G. Zhang, T. Guo, H. Zheng, and Z. Li, "Effect of Calcination Temperature on Catalytic Performance of CuCe/AC Catalysts for Oxidative Carbonylation of Methanol," J. Fuel Chem. Technol., vol. 44, no. 6, pp. 674–679, 2016.
- [20] G. Zhan, J. Yu, Z. Xu, F. Zhou, and R. Chi, "Kinetics of Thermal Decomposition of Lanthanum Oxalate Hydrate," *Trans. Nonferrous Met. Soc.*, vol. 22, p. 925–934, 2012.
- [21] D. D. Wu, S. M. Wen, J. Yang, and J. S. Deng, "Investigation of Dissolution Kinetics of Zinc from Smithsontie in 5-sulphosalicylic Acid Solution," *Can. J. Metall. Mater. Sci.*, vol. 54, no. 1, pp. 51–57, 2015.