UJI TAK MERUSAK PELAT ELEMEN BAKAR U₃Si₂/AI DENSITAS URANIUM 4,8 gU/cm³ MENGGUNAKAN RADIOGRAFI SINAR-X DIGITAL

Refa Artika, Rohmad Sigit, Helmi Fauzi Rahmatullah, Supardjo, Aslina Br. Ginting Pusat Teknologi Bahan Bakar Nuklir – BATAN Kawasan PUSPIPTEK Serpong Gd.20 Tangerang Selatan, Banten 15314 e-mail: refa-artika@batan.go.id (Naskah diterima: 10–02–2020, Naskah direvisi: 23–02–2020, Naskah disetujui: 29–02–2020)

ABSTRAK

UJI TAK MERUSAK PELAT ELEMEN BAKAR U₃SI₂/AI DENSITAS URANIUM 4,8 gU/cm³ MENGGUNAKAN RADIOGRAFI SINAR-X DIGITAL. Telah dilakukan uji tak merusak PEB U₃Si₂/AI densitas uranium 4,8 gU/cm³ pasca iradiasi dengan *burn up* 20, 40,dan 60 %. Pengujian meliputi pengamatan secara visual, analisis citra radiograf dan pengukuran dimensi menggunakan radiografi sinar-X digital. Uji tak merusak bertujuan untuk mengetahui unjuk kerja, integritas dan kehandalan PEB selama diiradiasi di RSG-GAS. Kehandalan dan kesalamatan bahan bakar selama di reaktor diindikasikan dengan tidak adanya anomali pada hasil pengujian pasca iradiasi. Elemen bakar uji (EBU) terdiri dari tiga PEB U₃Si₂/Al densitas 4,8 gU/cm³ pasca iradiasi ditransfer dari RSG-GAS ke hotcell 101 IRM melalui kanal hubung Instalasi Penyimpanan Sementara Bahan Bakar Bekas (IPSB3). Selanjutnya EBU ditransfer ke hot cell 103 untuk dilakukan pengujian tak merusak menggunakan radiografi sinar-X digital dengan tujuh kali penembakan sehingga diperoleh hasil citra radiografi dengan resolusi yang baik. Citra radiografi yang dihasilkan dievaluasi lebih lanjut untuk mendapatkan data cacat dan dimensi PEB U₃Si₂/AI densitas 4.8 gU/cm³ pasca iradiasi antara lain lebar meat, lebar PEB, jarak meat-cladding, jarak batas meat-cladding sisi kanan kiri pada sisi jauh (SJ) dan sisi dekat (SD). Hasil analisis menggunakan radiografi sinar-X menunjukkan adanya bercak putih pada cladding bagian tengah PEB U₃Si₂/AI densitas 4,8 gU/cm³ dengan burn up 20%. Sementara itu, PEB U₃Si₂/AI densitas 4,8 gU/cm³ dengan *burn up* 40 dan 60 % tidak ditemukan adanya indikasi cacat permukaan dan cacat lainnya. Hasil pengukuran menunjukkan tidak adanya perubahan dimensi, hal ini menunjukkan bahwa integritas bahan bakar tetap terjaga setelah PEB U₃Si₂/Al densitas 4,8 gU/cm³ diiradiasi di teras RSG-GAS. Citra radiografi dan data pengukuran dimensi digunakan untuk pemetaan titik-titik pencuplikan sampel untuk tahap pengujian selanjutnya.

Kata kunci: PEB, U₃Si₂/Al, 4,8 gU/cm³, uji tak merusak, radiografi sinar-X.

ABSTRACT

NON DESTRUCTIVE TEST FOR U₃Si₂/AI FUEL PLATE WITH 4,8 gU/cm³ URANIUM DENSITY USING DIGITAL X-RAY RADIOGRAPHY. Non-destructive test for irradiated U₃Si₂/Al fuel plate with 4,8 gU/cm³ uranium density and 20, 40, and 60% burn-up has been done. The test includes visual inspection, radiographic image analysis, and dimension measurement using digital x-ray radiography. The non-destructive test aimed to determine the performance, integrity, and reliability of U₃Si₂/AI fuel plate with 4,8 gU/cm³ uranium density during irradiation at RSG-GAS. Reliability and safety of the fuel during irradiation are indicated by the absence of anomalies in the post-irradiation examination result. Three samples of irradiated U₃Si₂/AI fuel element (FE) with 20, 40, and 60 % burn-up were transferred from RSG-GAS to RMI hot cell 101 through transfer channel of Interim Storage Spent Fuel (ISSF). The U₃Si₂/AI fuel plate were then transferred to hot cell 103 for non-destructive test using digital x-ray radiography with seven shots for good resolution radiographic images. The radiographic images were evaluated to obtain data of defects and dimensions such as meat width, fuel plate width, meat-cladding distance, right-left meatcladding boundary distance at the far side (SJ) and the near side (SD). The X-ray radiography analysis shows the presence of white spot in the middle of U₃Si₂/AI fuel cladding with 20% burnup. Meanwhile, indication of surface defects and other defects were not found for the 40 and 60% burn-up samples. The dimensional measurement data show no dimensional changes, which indicates solid integrity after irradiation in the RSG-GAS. The measurement data analisis can further be used for mapping the sampling spots for the next test.

Keywords: Fuel plate, U₃Si₂/Al, 4,8 gU/cm³, non destructive test, X-ray radiography

PENDAHULUAN

Indikator unjuk kerja (performance) suatu bahan bakar secara umum ditunjukkan oleh pemenuhan kriteria uji iradiasi dan uji pasca iradiasi. Kriteria atau parameter uji pasca iradiasi yang sering digunakan oleh beberapa negara adalah pengujian tak merusak. Uji tak merusak meliputi pengamatan visual, pengukuran dimensi, distribusi hasil fisi dengan gamma scanning, analisis cacat menggunakan radiografi sinar-X dan eddy current test[1,2].

Indonesia memiliki fasilitas uji pasca iradiasi di Instalasi Radiometalurgi (IRM) Pusat Teknologi Bahan Bakar Nuklir (PTBBN) BATAN. IRM didesain untuk melakukan pengujian pasca iradiasi bahan bakar reaktor riset Reaktor Serba Guna G.A Siwabessy (RSG-GAS), bahan bakar reaktor daya tipe Pressurized Water Reactor (PWR) dan Pressurized Heavy Water Reactor (PHWR)[3]. Bahan bakar RSG-GAS merupakan bahan bakar silisida tipe pelat U₃Si₂/AI densitas 2,96 gU/cm³. Pengujian pasca iradiasi untuk menjamin unjuk kerja bahan bakar meliputi pengamatan terhadap kemungkinan terjadinya blister, lepasan produk fisi, swelling, warping plate dan kondisi yang tidak biasa lainnya. Pengujian yang telah dilakukan di IRM untuk bahan bakar U₃Si₂/AI densitas 2,96 gU/cm³ antara pengujian tak merusak lain berupa pengamatan visual dan penentuan nilai burnup menggunakan spektrometer gamma[2]. Selain pengujian tak merusak, pengujian metalografi serta analisis fisikokimia untuk konfirmasi nilai burnup juga telah dilakukan dengan hasil yang cukup baik[4,5]. Untuk mendukung kegiatan uji pasca iradiasi, saat ini di IRM telah terpasang peralatan radiografi sinar-X digital melengkapi peralatan uji ultrasonik yang telah terpasang sebelumnya. Radiografi sinar-X digital di hot cell 103 IRM memiliki tegangan maksimum hingga 320 kV yang dilengkapi dengan flexible manipulator untuk (Refa Artika, Rohmad Sigit, Helmi Fauzi Rahmatullah, Supardjo, Aslina Br.Ginting)

menyesuaikan posisi sampel uji seperti yang terlihat pada Gambar 1. Pengembangan sistem uji dengan menggunakan sinar-X juga dilakukan pada *Irradiated Materials Examination Facility* (IMEF) di Korea Selatan dengan spesifikasi tegangan 160 kV dan 450 kV[6]. Radiografi sinar-X digital memiliki keunggulan jika dibandingkan dengan radiografi sinar-X konvensional. Selain pengamatan dapat dilakukan secara *real-time*, radiografi sinar-X digital memiliki efisiensi dan resolusi yang tinggi sehingga analisis dapat dilakukan dengan lebih cepat dan akurat[7].

Gambar 1. Radiografi sinar-X digital di hot cell 103 IRM.

Saat ini PTBBN telah berhasil mengembangkan Elemen Bakar Uji (EBU) U₃Si₂/Al tipe pelat dengan meningkatkan nilai densitas menjadi 4,8 gU/cm³ yang diiradiasi di RSG-GAS sebagai kandidat pengganti bahan bakar U₃Si₂/AI densitas 2,96 gU/cm³. Peningkatan densitas uranium membuat kandungan ²³⁵U di dalam bahan bakar menjadi lebih banyak sehingga dapat meningkatkan siklus operasi reaktor karena waktu tinggal (life time) bahan bakar di dalam reaktor menjadi lebih lama. Hal ini akan meningkatkan efisiensi periode penggantian bahan bakar (refuelling) dan daur bahan bakar[8]. Desain EBU U₃Si₂/AI densitas 4,8 gU/cm3 terdiri dari 3 (tiga) pelat (PEB) elemen bakar seperti yang ditunjukkan pada Gambar 2 dengan nomor seri CBBJ 249 (pelat no 3), CBBJ 251 (pelat no 7) dan CBBJ 250 (pelat no 19) yang diiradiasi dengan variasi burnup berturutturut sebesar 20%, 40% dan 60%. Pengujian awal PEB U₃Si₂/Al densitas 4,8 qU/cm³ pasca iradiasi menggunakan spektrometer gamma untuk menentukan distribusi hasil fisi 134Cs/137Cs menunjukkan distribusi hasil fisi yang baik[9].

Makalah ini fokus membahas pengujian tak merusak PEB U₃Si₂/Al tingkat muat uranium 4,8 gU/cm³ melalui pengamatan visual dan analisis citra radiografi sinar-X. Hal ini dilakukan untuk mengetahui unjuk kerja, kestabilan dan kehandalan untuk menjamin keselamatan bahan bakar selama pengoperasian RSG-GAS yang diindikasikan dengan tidak adanya anomali pada hasil pengujian pasca iradiasi. Selanjutnya, data uji tak merusak PEB U₃Si₂/Al densitas 4.8 qU/cm³ menggunakan radiografi sinar-X digunakan sebagai data awal pemetaan pencuplikan sampel uji untuk pengujian merusak melalui analisis metalografi dan fisikokimia. Secara keseluruhan, hasil pengujian tersebut digunakan sebagai evaluasi unjuk kerja bahan bakar melalui uji iradiasi dan uji pasca iradiasi yang selanjutnya menjadi umpan balik dalam optimasi desain dan parameter fabrikasi.

Gambar 2. Elemen Bakar Uji PEB U₃Si₂/Al densitas 4,8 gU/cm³ [10]

METODOLOGI

Pengujian tak merusak diawali dengan proses transfer tiga buah PEB U₃Si₂/AI densitas 4,8 gU/cm³ pasca iradiasi dengan *burn up* 20, 40, dan 60% ditransfer dari RSG-GAS melalui kanal hubung Instalasi Penyimpanan Sementara Bahan Bakar Bekas (IPSB3) menuju ke *hotcell* 101 IRM.

Pengamatan visual dilakukan di dalam hot cell 102 pada setiap PEB menggunakan alat bantu kamera DSLR Canon 7 setelah sebelumnya PEB ditransfer dari hot cell 101. Selanjutnya, ketiga PEB ditransfer menuju hot cell 103 untuk pengujian menggunakan alat X-Ray Inspection System K4. Pengujian diawali dengan pengaturan tinggi dudukan sampel mesin radiografi sinar-X hingga jarak vertikal dari panel detektor mencapai 60 cm. Pada jarak tersebut. citra digital memiliki perbandingan 1:1 terhadap benda uii sesungguhnya. Secara bergantian, PEB U₃Si₂/AI densitas 4,8 gU/cm³ pasca iradiasi diletakkan di dudukan sampel kemudian dilakukan scanning seluruh permukaan dan hasil citra ditampilkan secara real time layar monitor. melalui Pengujian menggunakan rentang nilai tegangan dari 120-150 kV dan kuat arus 1000-1500 µA. Masing-masing PEB ditembak sebanyak tujuh kali dengan cara menggeser dudukan sampel menggunakan software control di komputer sehingga diperoleh hasil citra radiografi yang utuh untuk satu pelat. Hal ini dilakukan karena satu kali tembakan hanya dapat menampilkan citra sebesar 274,664 mm x 221,288 mm.

Citra radiografi yang dihasilkan pada pengujian radiografi sinar-X digital dievaluasi lebih lanjut untuk mendapatkan data dimensi PEB U₃Si₂/AI densitas 4,8 gU/cm³ pasca iradiasi. Data dimensi diperoleh dengan cara mengukur dimensi hasil citra yang tertampil menggunakan menu yang ada dalam *software* analisis citra. Data dimensi yang dianalisis adalah lebar *meat*, lebar PEB, jarak *meat-cladding*, jarak batas *meat-cladding* sisi kanan kiri pada sisi jauh (SJ) dan sisi dekat (SD). Data uji tak merusak yang didapatkan selanjutnya digunakan untuk menentukan daerah pencuplikan PEB U₃Si₂/AI densitas 4,8 gU/cm³ pasca iradiasi untuk pengujian ke tahap selanjutnya yaitu pengujian dengan metode merusak.

HASIL DAN PEMBAHASAN

Hasil uji tak merusak PEB U₃Si₂/Al densitas 4,8 gU/cm³ dengan *burn-up* 20, 40, dan 60% dengan pengamatan visual ditunjukkan berturut-turut oleh Gambar 3, 4 dan 5.

Gambar 3.Visualisasi PEB U₃Si₂/AI densitas 4,8 gU/cm³ dengan *burn up* 20%.

Gambar 4.Visualisasi PEB U₃Si₂/Al densitas 4,8 gU/cm³ dengan *burn up* 40%.

Gambar 5.Visualisasi PEB U₃Si₂/Al densitas 4,8 gU/cm³ dengan *burn up* 60%.

(Refa Artika, Rohmad Sigit, Helmi Fauzi Rahmatullah, Supardjo, Aslina Br.Ginting)

Berdasarkan pengamatan visual pada PEB U₃Si₂/AI densitas 4,8 gU/cm³ dengan burn up 40 dan 60%, tidak ditemukan adanya indikasi cacat permukaan dan cacat lainnya. Hal yang berbeda ditunjukkan pada pengamatan visual terhadap PEB U₃Si₂/AI densitas 4,8 gU/cm³ dengan burn-up 20%. Pada bagian tengah PEB ditemukan adanya anomali berupa bercak putih yang diduga merupakan indikasi terjadinya korosi atau pembentukan lapisan oksida. Untuk memastikan penyebab pasti terjadinya hal tersebut, diperlukan pengujian merusak melalui analisis korosi atau metalografi.

Hasil pengamatan visual selanjutnya dikonfirmasi oleh citra radiografi sinar-X yang dihasilkan oleh uji tak merusak menggunakan radiografi sinar-X digital di hotcell 103 IRM. Citra radiografi sinar-X digital pada PEB U₃Si₂/AI densitas 4,8 gU/cm³ untuk ketiga nilai variasi *burn-up* ditunjukkan pada Gambar 6, 7 dan 8.

Gambar 6.Radiograf PEB U₃Si₂/AI densitas 4,8 gU/cm³ dengan *burn up* 20%

Gambar 7. Radiograf PEB U₃Si₂/AI densitas 4,8 gU/cm³ dengan *burn up* 40%

Gambar 8. Radiograf PEB U₃Si₂/Al densitas 4,8 gU/cm³ dengan *burn up* 60%.

Pengamatan pada bagian *meat* yang mengandung uranium memiliki citra lebih gelap dari *cladding* yang merupakan paduan AIMg2. Citra lebih gelap menunjukkan bahwa densitas pada bagian tersebut lebih besar atau lebih rapat[11]. Hal ini pula yang membedakan hasil radiografi sinar-X digital

dan konvensional. Citra radiografi sinar-X konvensional pada bagian dengan densitas lebih besar akan berwarna putih karena citra yang dihasilkan merupakan citra negatif, sedangkan pada radiografi sinar-X digital, citra yang dihasilkan merupakan citra positif.

Hasil citra radiografi sinar-X PEB U₃Si₂/AI densitas 4,8 gU/cm³ pada nilai burn up 40% dan 60% menujukkan bahwa PEB pasca iradiasi berada pada kondisi normal dan tidak ditemukan adanya indikasi atau anomali di bagian permukaan. Hal ini sejalan dengan hasil pengamatan visual yang telah dilakukan sebelumnya. Citra radiografi sinar-X pada PEB U₃Si₂/AI densitas 4,8 gU/cm³ dengan burn up 20% juga mengonfirmasi hasil pengamatan visual yang menunjukkan adanya anomali pada bagian tengah PEB, tepatnya berada pada cladding AIMg2 yang mengindikasikan terjadinya pengurangan ketebalan seperti yang ditunjukkan pada Gambar 9. Namun anomali yang terjadi pada cladding AIMg2 tersebut masih berada pada kategori anomali yang diijinkan karena kerusakan tidak mencapai bagian meat. Identifikasi anomali lebih lanjut dapat dianalisis dan dibuktikan dengan melakukan pengujian secara merusak.

Untuk melengkapi data uji yang didapatkan melalui pengamatan visual dan citra radiograf, dilakukan pengukuran dimensi PEB U₃Si₂/AI densitas 4,8 gU/cm³ pasca iradiasi dengan variasi burn up 20, 40, dan 60% menggunakan radiografi sinar-X digital. Data hasil pengukuran dimensi PEB U₃Si₂/Al densitas 4,8 gU/cm³ pasca iradiasi ditunjukkan pada Tabel 1. Hasil pengukuran menunjukkan bahwa tidak perubahan dimensi, terjadi sehingga integritas PEB U₃Si₂/AI densitas 4,8 gU/cm³ tetap terjaga setelah mengalami proses iradiasi di teras RSG-GAS. Indikasi lain yang menunjukkan solidnya integritas PEB U₃Si₂/AI adalah diperolehnya nilai jarak

aman meat pada tiap-tiap sisi PEB masih berada pada interval nilai jarak yang ditetapkan[12]. Berdasarkan data dimensi PEB yang telah dianalisa, selanjutnya dilakukan pemetaan untuk menentukan titikpencuplikan sampel. Pencuplikan titik sampel dilakukan pada lima titik yaitu pada bagian Top (T), Middle Top (MT), Middle (M), Middle Bottom (MB), dan Bottom (B) untuk semua PEB dengan dimensi sampling 2,5 x 3 cm sesuai dengan dimensi dari mesin punch. Dua titik pencuplikan sampel tambahan dilakukan pada PEB dengan variasi burn-up 20%. Pencuplikan tambahan dilakukan pada daerah yang terindikasi cacat seperti yang ditunjukkan oleh Gambar 10.

(a)

(b)

- Gambar 9. Identifikasi cacat PEB U₃Si₂/AI densitas 4,8 gU/cm³ *burn up* 20% dengan:
 - (a) Pengamatan visual
 - (b) Radiografi sinar-X

Dimensi	PEB U ₃ Si ₂ /Al densitas 4,8 gU/cm ³ pasca iradiasi		
	burn up 20%	burn up 40%	burn up 60%
Lebar PEB (mm)	70,7018	70,6536	70,5091
Lebar <i>meat</i> (mm)	62,7850	63,0666	62,7877
Jarak <i>meat - cladding</i> SD (mm)	15,7689	12,4864	15,1357
Jarak <i>meat - cladding</i> SJ (mm)	13,7173	10,5092	12,0662
Jarak <i>meat - cladding</i> kiri SJ (mm)	4,1665	4,1160	4,2546
Jarak <i>meat - cladding</i> kanan SJ (mm)	4,5511	4,5511	4,3941
Jarak <i>meat - cladding</i> kiri SD (mm)	4,2305	4,5341	4,4638
Jarak meat - cladding kanan SD (mm)	4,6156	4,0691	4,1151

Gambar 10. Pemetaan sampling pemotongan PEB U₃Si₂/AI densitas 4,8 gU/cm³ pasca iradiasi.

SIMPULAN

Uji tak merusak menggunakan radiografi sinar-X dapat digunakan sebagai konfirmasi terhadap hasil pengamatan cacat secara visual PEB U₃Si₂/AI densitas 4,8 gU/cm³ pasca iradiasi. Dari citra radiografi tersebut menunjukkan bahwa tidak terdapat perubahan dimensi akibat proses iradiasi di reaktor pada PEB U₃Si₂/AI densitas 4,8 gU/cm³ akibat iradiasi. Sehingga didapatkan hasil berupa pemetaan titik-titik sampling untuk dilakukan pengujian ke tahap selanjutnya dari pengukuran dimensi.

UCAPAN TERIMA KASIH

Terima kasih disampaikan kepada Ka.PTBBN dan Ka.BUR yang telah menyiapkan dana DIPA 2019 dan kepada staf BUR yang telah membantu melaksanakan uji tak merusak PEB U₃Si₂/Al densitas 4,8 gU/cm³ pasca iradiasi sehingga pembuatan makalah ini dapat terwujud.

DAFTAR PUSTAKA

- [1]. M. Fauzi, R. Himawan, H. F. Rahmatullah, S. Permana, A. Gogo, "Analisis cacat blister pada kelongsong bahan bakar U₃Si₂/Al menggunakan ultrasonic test", *Jurnal Ilmiah Daur Bahan Bakar Nuklir Urania*, vol. 23, no. 3, hal. 153-164, 2017.
- [2]. P. H. Liem, S. Amini, A. G. Hutagaol, and T. M. Sembiring, "Nondestructive burnup verification by gamma-ray spectroscopy of LEU silicide fuel plates irradiated in the RSG GAS multipurpose reactor," *Annals Nuclear Energy*, vol. 56, pp. 57–65, 2013.
- [3]. A. Sunarto, dkk, "Laporan Analisis Keselamatan (LAK) Instalasi Radiometalurgi (IRM)," Pusat Teknologi Bahan Bakar Nuklir, 2012.
- [4]. M. K. Ajiriyanto, A. B. Ginting, and Junaedi, "Analisis Metalografi Pelat

Elemen Bakar U₃Si₂/Al," *Jurnal Ilmiah Daur Bahan Bakar Nuklir Urania*, vol. 24, no. 1, hal. 39–50, 2018.

- [5]. A. B. Ginting and P. H. Liem, "Absolute burnup measurement of LEU silicide fuel plate irradiated in the RSG GAS multipurpose reactor by destructive radiochemical technique," *Annals Nuclear Energy*, vol. 85, pp. 613–620, 2015.
- [6]. Y. J. Kim, B. O. Yoo, H. M. Kim, S. B. Ahn, "Development of X-ray system for irradiated fuel in hotcell," *Hotlab Conference Proceeding* 2016, Karsruhe, Germany.
- [7]. B. S. Verma and I. K. Indrajit, "Impact of computers in radiography: The advent of digital radiography, Part-2," *Indian Journal Radiology Imaging*, vol. 18, no. 3, pp. 204-209, 2008.
- [8]. Supardjo, T. Surbakti, E. P. Hastuti, A. Hamzah, A.B. Ginting," Teknik pembuatan dan pengujian bahan bakar dispersi U₃Si₂/AI densitas uranium tinggi", Buku Batan Press,2019.
- [9]. Y. Nampira, S. Ismarwanti, H. F. Rahmatullah, and K. Mustopa, "Non

destructive test nuclear fuel U₃Si₂/Al 4,8 gU/cm³ post irradiation with 60% burn up research reactor," *Hotlab Conference Proceeding* 2016, Karsruhe, Germany.

- [10]. A. B. Ginting," Dokumen teknis uji bahan dan bahan bakar nuklir pra dan pasca iradiasi untuk reaktor riset" Pusat Teknologi Bahan Bakar Nuklir, 2019.
- [11]. F. C. de Beer, "Neutron and X-ray Radiography/Tomography: Non-Destructive Analytical Tools for Characterization of Nuclear Materials," *The Journal of Sothern African Institute* of Mining and metallurgy, vol. 115, ISSN 2225-6253, 2015.
- [12]. A. S. Tremsin, A. E. Craft, G. C. Papaioannou, A. T. Smolinsk, B. J. Littell, and K. D. Riley, "On the possibility to investigate irradiated fuel pins non-destructively by digital neutron radiography with a neutron-sensitive microchannel plate detector with Timepix readout", Annals of Nuclear Energy, vol 927, pp. 109-118, 2019.