INTERAKSI BAHAN BAKAR U₃Si₂-AI DENGAN KELONGSONG AIMg2 PADA ELEMEN BAKAR SILISIDA TMU 2,96 gU/cm³ PASCA IRADIASI

Aslina Br.Ginting, Maman Kartaman, Supardjo Pusat Teknologi Bahan Bakar Nuklir - BATAN Kawasan Puspiptek, Serpong, Tangerang Selatan, 15314 e-mail: aslina@batan.go.id (Naskah diterima : 12-12-2014, Naskah direvisi: 26-01-2015, Naskah disetujui: 28-01-2015)

ABSTRAK

INTERAKSI BAHAN BAKAR U3Si2-AI DENGAN KELONGSONG AIMg2 PADA ELEMEN BAKAR SILISIDA TMU 2,96 gU/cm³ PASCA IRADIASI. Telah dilakukan analisis interaksi bahan bakar U₃Si₂-Al dengan kelongsong AlMg2 pada pelat elemen bakar (PEB) U₃Si₂-Al tingkat muat uranium (TMU) 2,96 gU/cm³ pasca iradiasi. Penelitian ini bertujuan untuk mengetahui pengaruh radiasi terhadap perubahan mikrostruktur PEB selama di reaktor. Untuk mengetahui pengaruh radiasi terhadap mikrostruktur PEB U₃Si₂-Al perlu dipahami interaksi kelongsong AlMg2 dengan inti elemen bakar U₃Si₂-Al pra maupun pasca iradiasi. Pengujian pra iradiasi dilakukan pemanasan PEB U₃Si₂-Al TMU 2,96 gU/cm³ dengan ukuran 10x10 mm di dalam tungku DTA (Differential Thermal Analysis) dengan variasi temperatur 450, 550, 650, 900 dan 1350°C. PEB U₃Si₂-Al TMU 2,96 gU/cm³ pasca iradiasi dilakukan pemotongan di dalam hotcell dengan ukuran 2x10 mm sebanyak 3 (tiga) sampel bagian bottom, middle dan top PEB. Potongan PEB U₃Si₂-Al TMU 2,96 gU/cm³ pra maupun pasca iradiasi dikenakan preparasi metalografi meliputi mounting, grinda, poles, dan etsa. Pengamatan mikrostruktur interaksi bahan bakar U₃Si₂ dengan kelongsong AIMg2 dalam PEB U₃Si₂-Al pra iradiasi dilakukan menggunakan Scanning Electron Microscope (SEM-EDS), sedangkan pengamatan mikrostruktur PEB U₃Si₂-Al pasca iradiasi dilakukan menggunakan mikroskop optik di dalam hotcell. Hasil interaksi U₃Si₂dengan matrik Al maupun kelongsong AlMg2 pada PEB U₃Si₂-Al pra iradiasi terjadi aglomerat dengan pembentukan senyawa baru U(Al,Si)x dan UAIx. Pembentukan aglomerat semakin besar dengan meningkatnya temperatur pemanasan. Interaksi U₃Si₂ dengan matrik Al maupun kelongsong AlMg2 pada PEB U₃Si₂-Al pasca iradiasi diperoleh hasil bahwa pada kelongsong bagian atas dan bawah terjadi lapisan oksida dan pada bagian tengah PEB terbentuk layer senyawa U(Al,Si)x berwarna abu-abu terang dengan ketebalan sekitar 1-3 mikron. Dari hasil analisis ini diperoleh bahwa PEB U₃Si₂-Al pra maupun pasca iradiasi ke duanya menghasilkan senyawa intermetalik U(AI,Si)x

Kata kunci: interaksi, PEB U₃Si₂-AI, kelongsong AIMg2, pra dan pasca iradiasi

ABSTRACT

INTERACTION OF U₃Si₂-AI FUEL ELEMENT WITH AIMg2 CLADDING ON POST IRRADIATION WITH LOADING OF URANIUM 2.96 gU/cm³. Interaction of U₃Si₂-AI fuel element with AIMg2 cladding on post irradiation of 2.96 gU/cm³ loading of uranium (TMU) of U₃Si₂-AI fuel elements plate (PEB) has been analyzed. The purpose of this research is to study the changes of microstructure of nuclear fuel elements during iradiation in reactor core. Understanding on interaction of U₃Si₂-AI fuel meat with AIMg2 cladding onpre and post irradiation needed to study the influence of radiation on fuel elements plate. PEB U₃Si₂-AI with 2.96 gU/cm³ by size 10 × 10 mm were heated in DTA (Differential Thermal Analysis) furnace with temperature variation at 450, 550, 650, 900 and 1350°C to perform pre irradiation test.Post irradiation samples were cut by size 2 × 10 mm as many as three samples taken from bottom, middle, and top of PEB in hotcell. The metallography preparation for each pieces of pre and post irradiation samples of U_3Si_2 -AI fuel elements platewith 2.96 gU/cm³ weredone through steps mounting, grinding, polishing, and etching. Scanning Electron Microscope (SEM-EDS) were used to observe the pre irradiation microstructure of fuel elements U_3Si_2 -AI with AIMg2 cladding interaction, while the post irradiationmicrostructure were observed by optical microscope in hot cell. The result show the interaction of U_3Si_2 with AI matrix or AIMg2 cladding in pre irradiation PEB U_3Si_2 -Aloccurred agglomeration formed new compouds of U(AI,Si)x and UAIx formation. Agglomeration formation on heated pre irradiation samples were bigger while heating temperature increased. The post irradiation sampels shoed the oxide layer were formed outside the AIMg2 cladding and the inner side of caldding that contact to the fuel meat formedlight-grey U(AI,Si)xlayer at 1-3 micron of thickness.

Keywords: Interaction, U₃Si₂-Alfuel elements plate, AIMg2 cladding, pre and post irradiation.

PENDAHULUAN

Beberapa pengujian post irradiation examination (PIE) yang dilakukan di laboratorium Instalasi Radiometalurgi (IRM), antara lain adalah uji tanpa merusak (Non Destructive Test, NDT) yang meliputi ketebalan PEB, distribusi hasil fisi, swelling, kelengkungan, cacat secara visual, dan uji merusak (Destructive Test, DT) yang meliputi analisis metalografi, mekanik dan analisis burn up secara radiokimia. Interaksi bahan bakar U₃Si₂-Al dengan kelongsong AlMg2 pada pelat elemen bakar (PEB) U₃Si₂-Al tingkat muat uranium (TMU) 2,96 gU/cm³ pasca iradiasi merupakan bagian analisis PIE yang harus dilakukan karena mempengaruhi unjuk kerja PEB U₃Si₂-Al. Terjadinya proses interaksi kelongsong AlMg2 dengan meat U₃Si₂-Al disebabkan oleh radiasi sinar gamma selama diradiasi dengan daya 15 MW di dalam teras reaktor. Distribusi temperatur di dalam bahan bakar rata-rata sebesar 120°C, tetapi akibat radiasi kadangkala menyebabkan terjadinya hot spot pada posisi tertentu di dalam bahan bakar yang menyebabkan distribusi temperatur meningkat menjadi 170°C^[1]. Peningkatan temperatur disebabkan oleh radiasi yang terkorelasi dengan lamanya bahan bakar diradiasi di reaktor dengan burn up tertentu menyebabkan kandungan hasil fisi dan unsur bermassa berat (heavy element, HE) meningkat. Terbentuknya hasil fisi dan HE menyebabkan tekanan di dalam meat bahan bakar meningkat, sehingga mendesak

kelongsong AlMg2. Tujuan penentuan interaksi kelongsong AlMg2 dengan inti elemen bakar U₃Si₂-Al adalah untuk mengetahui pengaruh radiasi terhadap unjuk kerja bahan bakar selama di iradiasi di dalam teras reaktor.

Sebelum melakukan pengujian interaksi kelongsong AlMg2 dengan inti elemen bakar atau meat U₃Si₂-Al pasca iradiasi di dalam hotcell, terlebih dahulu dilakukan pengujian interaksi kelongsong AIMg2 dengan meat U₃Si₂-AI pra iradiasi atau secara uji dingin di luar hotcell. Pengujian secara dingin dilakukan dengan proses pemanasan PEB U₃Si₂-AI TMU 2,96 gU/cm³ di dalam tungku DTA (Differential Thermal Analysis) dengan variasi temperatur. Tujuan pengujian analisis metalografi PEB pra iradiasi untuk memperoleh metode baku yang selanjutnya digunakan dalam pengujian metalografi PEB pasca iradiasi di dalam hotcell. Terjadinya interaksi meat U₃Si₂-Al dengan kelongsong AlMg2 pada PEB U₃Si₂-Al pra iradiasi disebabkan oleh beberapa faktor antara lain: saat pembuatan ingot U₃Si₂-AI menggunakan busur listrik, dimana matrik Al dipanaskan hingga melebur dan leburannya berinteraksi langsung dengan logam U membentuk fase baru U(AI,Si)3 dan senyawa UAl_x. Faktor kedua yang mempengaruhi interaksi adalah persentase lompong atau porositas di dalam volume meat. Porositas meat U₃Si₂-AI yang dihasilkan pabrikator bahan bakar bervariasi antara satu dengan lainnya, misalnya untuk ANL 3 -15 % volume

(Aslina Br.Ginting, Maman Kartaman, Supardjo)

bahan bakar, 4 % volume untuk CERCA, 7-8% volume untuk NUKEM, 9-10% volume untuk B&W serta 5-9 % volume untuk PT. BATEK^[2]. Peningkatan porositas di dalam *meat* diduga akan mempengaruhi sifat metalografi PEB U₃Si₂-AI. Faktor lain yang menyebabkan terjadinya interaksi *meat* U₃Si₂-AI dengan kelongsong AIMg2 adalah proses perolan PEB U₃Si₂-AI.

Analisis metalografi terhadap PEB U₃Si₂-AI TMU 2,96 gU/cm³ pasca iradiasi diawali dengan pemotongan PEB dengan dimensi 2x10 mm sebanyak 3 (tiga) posisi sampel. Potongan sampel tersebut merupakan hasil pemotongan pada bagian bottom (10 cm dari bawah), middle (30 cm dari bawah) dan top (10 cm dari atas). Pemotongan sampel tersebut berdasarkan distribusi hasil fisi yang diperoleh dari hasil analisis menggunakan gamma scanning. Fenomena yang diamati dalam analisis metalografi adalah interaksi kelongsong AIMg2 dengan meat bahan bakar U₃Si₂₋Al, interaksi antara meat bahan bakar U₃Si₂ dengan matrik Al, interaksi antara U₃Si₂ dengan matrik Al yang menyebabkan adanya buble dan void dan yang terakhir adalah analisis ikatan antar muka atau interface celah antara kelongsong dengan meat bahan bakar^[3]

METODOLOGI

a. Analisis mikrostruktur PEB U₃Si₂-Al TMU 2,96 gU/cm³ pra iradiasi

Bahan yang digunakan dalam penelitian ini adalah PEB U₃Si₂-Al dengan TMU 2,96 gU/cm³ yang dipotong dengan ukuran 10x10 mm menggunakan diamond cutting. Potongan PEB U₃Si₂-Al dimasukkan ke dalam krusibel alumina dan dipanaskan di dalam tungku DTA dari temperatur 30°C hingga 1500°C dengan kecepatan pemanasan 10°C/menit dalam media gas argon^[4]. Hasil pengukuran hingga 1500°C diperoleh femonena reaksi termik berupa termogram DTA yang menyatakan besarnya temperatur reaksi matrik Al dan kelongsong AIMg2 dengan inti elemen bakar atau meat U₃Si₂. Setelah diketahui femonena reaksi termik yang terjadi pada temperatur 450, 550, 650, 900 dan 1350°C, kemudian disiapkan potongan PEB U₃Si₂-Al lainnya dengan ukuran 10x10 mm (4 buah) dan dipanaskan dalam tungku DTA pada masing-masing temperatur di atas dengan waktu tunda selama 1 jam. Cuplikan PEB U₃Si₂-Al hasil pemanasan dengan DTA kemudian dimounting dengan resin kemudian dilakukan metallografi mencakup preparasi yang penggerindaan dan pemolesan mulai dari grit 200, 400, 800,1200 dan 2400 sampai permukaan cuplikan menjadi halus dan mengkilap. Setelah permukaan cuplikan halus, dilakukan pengetsaan menggunakan larutan kimia kemudian dilakukan analisis mikrostruktur antara lain interaksi bahan bakar U₃Si₂ dengan matrik Al dan kelongsong AIMg2 menggunakan Scanning Electron Microscope (SEM-EDS) merek JEOL.

b. Analisis mikrostruktur PEB U₃Si₂-Al TMU 2,96 gU/cm³ pasca iradiasi

Analisis mikrostruktur yang dilakukan adalah interaksi kelongsong AIMg2 dengan *meat* bahan bakar U₃Si₂-AI pasca iradiasi. Kegiatan analisis mikrostruktur diawali dengan pemotongan PEB U₃Si₂-AI TMU 2,96 gU/cm³ pasca iradiasi dengan ukuran 2x10 mm sebanyak 3 (tiga) sampel pada bagian *bottom, middle* dan *top* dari PEB. Potongan sampel tersebut kemudian dipreparasi dengan tahapan sbb^[5].

- proses mounting menggunakan resin akrilik dan hardener.
- proses penggerindaan menggunakan kertas amplas SiC dengan ukuran bervariasi dari kasar hingga halus yaitu dari *grit* 500, 800, 1200, 2000 dan 2400.
- proses pemolesan menggunakan kain poles dari beludru dan pasta diamond dari ukuran 3 sampai 1 mikron.
- pencucian sampel menggunakan alat ultrasonic dalam media alkohol atau air demineral.
- pengamatan mikrostruktur dengan menggunakan mikroskop optik di *hotcell*.

HASIL DAN PEMBAHASAN

Hasil analisis interaksi termokimia PEB U₃Si₂-AI TMU 2,96 gU/cm³ hasil pemanasan hingga 1500°C diperoleh berupa termogram DTA ditunjukkan pada Gambar 1. Gambar 1 pada posisi 1 menunjukkan bahwa pada temperatur 451°C terjadi perubahan aliran panas (heat flow) yang menunjukkan titik eutektik paduan AIMg2. Pada temperatur 550°C, posisi 2 terjadi perubahan fasa dari fasa α menjadi fasa (L + α) yang ditunjukkan oleh perubahan base line aliran panas. Hal ini didukung oleh diagram fasa biner antara Al dengan Mg yang menunjukkan bahwa kemampuan larut padat (solid solubility) paduan AIMg2 terjadi pada temperatur 451°C, diatas temperatur sehingga tersebut kelongsong AIMg2 telah mengalami perubahan fasa^[5,6]. Oleh karena itu untuk penyiapan sampel PEB U₃Si₂-Al untuk analisis mikrostruktur dimulai dari pemanasan 450°C (titik eutektik paduan AIMg2).

Gambar 1. Termogram reaksi termokimia PEB U₃Si₂-AI TMU 2,9 gU/cm³

Pada pemanasan 639°C, posisi 3 PEB U₃Si₂-Al mulai mengalami reaksi termik yang ditunjukkan oleh adanya puncak endotermik dengan menyerap sejumlah panas. Puncak endotermik tersebut menunjukkan terjadinya peleburan matrik Al dan kelongsong AlMg2 yang diikuti oleh suatu puncak eksotermik pada temperatur 650°C pada posisi 4. Reaksi eksotermik tersebut menunjukkan terjadinya reaksi antara lelehan matrik AI dan AIMg2 dengan U3Si2 yang membentuk senvawa U(AI,Si)_x. Reaksi eksotermik tersebut berdekatan dengan puncak endotermik (posisi 3), karena terjadi pengikatan atau difusi lelehan matrik Al dan AlMg2 ke dalam inti elemen bakar U₃Si₂ secara cepat. Hal ini terjadi karena lelehan matrik Al mempunyai kontak antar muka dengan gaya gerak yang lebih besar sehingga ikatan intermetalik lelehan Al dengan U₃Si₂ terjadi secara simultan dengan reaksi peleburan matrik Al. Reaksi termokimia antara U₃Si₂ dengan matrik Al membentuk senyawa U(Al,Si)_x^[2,4] dengan tahapan perubahan fasa sbb :

U_3Si_2 + AI (solid) \rightarrow U_3Si_2 (solid) + AI (liq)
(639°C)
U_3Si_2 (solid) + AI (liq) \rightarrow U_3Si_2 (solid)+
U(AI,Si) ₃ + U (solid)(650°C)
$U_{3}Si_{2} + U(AI,Si)_{3} + U(solid) \rightarrow U(AI,Si)_{3} + U_{3}Si$
(900°C)
U(AI,Si) ₃ + U ₃ Si → UAIx + Si(1372°C)

Pada kisaran temperatur 800 hingga 900°C pada posisi 5 terjadi perubahan fasa dari U₃Si₂ menjadi U₃Si yang ditunjukkan dengan adanya perubahan aliran panas *(base line)* pada termogram DTA PEB U₃Si₂-Al pada Gambar 1. Hal ini terjadi karena adanya reaksi antara U *solid state* dengan partikel U₃Si₂ membentuk U₃Si^[7].

Pada pemanasan 1300°C hingga 1400°C atau pada posisi 6 tampak terjadi perubahan aliran panas yang ditandai adanya endotermik yang puncak menunjukkan terjadinya pembentukan senyawa UAI_x dalam cair peleburan fasa dan unsur Si. Terbentuknya puncak endotermik pada temperatur tersebut menunjukkan terjadinya pengikatan atau pembentukan senyawa U-Al_x dan Si bebas dari senyawa U(Al,Si)₃. Pembentukan senyawa UAI_x (UAI₂,UAI₃ dan UAl₄)^[5,7] sangat dipengaruhi oleh temperatur, waktu, kandungan matrik Al dan kandungan uranium.

Pada proses pendinginan, PEB U₃Si₂-Al dengan TMU 2,9 gU/cm³ diperoleh dua puncak eksotermik yang menunjukkan terjadinya reaksi solidifikasi senyawa UAl_x pada posisi 7. Reaksi solidifikasi tersebut *reversible* dengan reaksi pembentukan senyawa UAl_x pada temperatur 1439°C atau

(Aslina Br.Ginting, Maman Kartaman, Supardjo)

posisi Reaksi solidifikasi ini pada 6. menunjukkan bahwa pemanasan pada temperature 1372°C terjadi peleburan dan pembentukan senyawa UAI_x (fasa cair) dan pada proses pendinginan senyawa UAI_x kembali menjadi solid (fasa padat). Selain terjadi reaksi solodifikasi senyawa UAI_x pada posisi 7, pada proses pendinginan juga terjadi reaksi solidifikasi matrik Al pada temperatur 600°C atau pada posisi 8. Hal ini disebabkan karena pada TMU 2,96 gU/cm3 matrik Al uranium bereaksi dengan membentuk senyawa UAI_x pada temperatur 1350°C. Namun, matrik Al tidak habis bereaksi membentuk senyawa UAIx, sehingga pada proses pendinginan sisa matrik Al mengalami reaksi solidifikasi seperti yang terlihat pada posisi 8 Gambar 1.

a. Analisis mikrostruktur PEB U₃Si₂-AI TMU 2,96 gU/cm³ pra iradiasi

Hasil analisis mikrostruktur PEB U₃Si₂-AI TMU 2,96 gU/cm³ pra iradiasi pada masing-masing temperatur pemanasan ditunjukkan pada Gambar 2 hingga Gambar 7. Hasil analisis mikrostruktur yang dilakukan terhadap PEB U₃Si₂-AI TMU 2,96 gU/cm³ segar (tanpa pemanasan) ditunjukkan pada Gambar 2.

Gambar 2. PEB U₃Si₂-AI TMU 2,96 g U/cm³ (tanpa pemanasan)

Gambar 2 terlihat jelas posisi kelongsong AlMg2 berada pada bagian tepi atas dan bawah, sedangkan inti elemen bakar U₃Si₂-Al terdistribusi secara merata pada bagian tengah PEB U₃Si₂-Al.

Mikrostruktur PEB U₃Si₂-AI TMU 2,96 gU/cm³ pra iradiasi hasil pemanasan pada

temperatur 450°C ditunjukkan pada Gambar 3. Paduan aluminium magnesium atau AIMg tidak dapat dikeraskan melalui perlakuan panas (*non heat treatable alloys*), namun magnesium mempunyai batas kemampuan larut padat (*solid solubility*) dalam aluminium terjadi pada temperatur 451°C. Berdasarkan fenomena inilah, maka analisis mikrostruktur dilakukan terhadap cuplikan PEB U₃Si₂-AI yang mengalami pemanasan di dalam tungku DTA pada temperatur 450°C dengan waktu tunda selama 1 jam.

Gambar 3. Ikatan antar muka kelongsong AIMg2 pada pemanasan 450°C

Gambar 3 menunjukkan adanya morfologi ikatan antar muka (*interface bonding*) kelongsong AlMg. Ikatan antar muka terjadi karena temperatur perolan pada 450°C dan proses anil pada temperatur 480°C mampu meningkatkan luas bidang kontak antar muka yang mempercepat difusi atom antar muka, sehingga menghasilkan ikatan antar muka logam yang lebih baik. Mikrostruktur PEB U₃Si₂-Al pada pemanasan 450°C belum menunjukkan terjadinya interaksi antara kelongsong AlMg2 dengan inti elemen bakar U₃Si₂-Al.

Pemanasan pada temperatur 550°C (di atas temperatur kemampuan larut padat paduan AlMg2) diperoleh mikrostruktur seperti yang terlihat pada Gambar 4. Terjadi migrasi unsur Al, Mg, U dan Si yang diidentifikasi menggunakan SEM-EDS seperti yang ditunjukkan pada Gambar 4a sampai 4d. Hasil analisis mikrostruktur cuplikan PEB U₃Si₂-Al pada pemanasan 550°C dilakukan dengan cara pemetaan *(mapping)* terhadap unsur Al, Mg, U dan Si^[8]. Pada Gambar 4a, terlihat jelas bahwa unsur Al telah berinteraksi ke dalam inti elemen bakar (IEB) U₃Si₂ dan unsur uranium maupun unsur Si sebagian telah berinteraksi ke arah kelongsong AlMg2 seperti yang terlihat pada Gambar 4c dan 4d. Sementara itu, unsur Mg tetap berada dibatas bingkai *(frame)* AlMg2 seperti yang terlihat pada Gambar 4b.

Hal ini menunjukkan bahwa pada temperatur pemanasan 550°C, telah terjadi ikatan logam *(intermetallik)* antara unsur uranium dengan AI, sedangkan unsur Mg tidak mengalami interaksi dengan unsur uranium karena unsur Mg mempunyai jumlah yang kecil dengan energi yang lebih kecil^[7].

Selain pada pemanasan 450°C dan 550°C, PEB U₃Si₂-AI juga mengalami reaksi termokimia pada pemanasan 650°C, 900°C dan 1350°C seperti yang terlihat pada Gambar 1. Hasil analisis mikrostruktur terhadap cuplikan PEB U₃Si₂-AI pada pemanasan 650°C menunjukkan terjadinya lelehan matrik AI dan lelehan kelongsong AIMg2. Lelehan AI dan AIMg2 berinteraksi dengan inti elemen bakar U₃Si₂ membentuk gumpalan kecil atau aglomerat yang mengikuti pola orientasi retakan partikel U₃Si₂ seperti yang ditunjukkan pada Gambar 5.

ISSN 0852-4777

Gambar 5. Mikrostruktur PEB U₃Si₂-Al pada pemanasan 650°C

Aglomerat yang terbentuk (berwarna putih abu-abu) mempunyai ukuran butir yang kecil dengan jumlah lebih banyak seperti yang terlihat pada Gambar 5 posisi-2. Hasil analisis menggunakan EDS memperlihatkan aglomerat yang terbentuk pada posisi-2 tersebut mempunyai perbandingan atom U : Al : Si = 17,97 : 55,60 : 26,44. Sementara itu, pada Gambar 5, posisi-3 dapat diamati bahwa terbentuk aglomerat yang mempunyai diameter butir lebih kecil dibandingkan dengan aglomerat yang terbentuk pada posisi-2. Hal ini disebabkan karena masih kurang waktu pemanasan hingga menyebabkan daya ikat antar aglomerat masih lemah. Namun dengan pemanasan lebih lanjut, aglomerat pada posisi-3 akan tumbuh menjadi aglomerat dengan ukuran butir lebih besar. Hasil analisis dengan menggunakan EDS menunjukkan aglomerat yang terbentuk pada posisi-3 mempunyai perbandingan atom U: AI : Si = 10,40 : 80,95 : 8,65, sedangkan pada posisi-1 daerah yang berwarna hitam dominan terdiri dari unsur Al dengan perbandingan atom U : Al :Si = 1,65 : 98,02 : 0,38.

Pengamatan mikrostruktur PEB U₃Si₂-AI pada pemanasan 900°C terlihat pengikatan inti elemen bakar U₃Si₂ dengan matrik AI dan kelongsong AlMg2 semakin besar seperti yang ditunjukkan pada Gambar 6. Fenomena ini terjadi karena pada temperatur tinggi reaksi termokimia terjadi lebih besar karena partikel U dan AI memiliki energi aktivasi yang besar.

Gambar 6. Mikrostruktur PEB U₃Si₂-Al pada pemanasan 900°C

Apabila dibandingkan antara pertumbuhan aglomerat yang terjadi pada Gambar 5 dengan aglomerat yang terjadi pada Gambar 6, baik pada posisi 1, 2 dan 3 interaksi terjadi semakin besar. Hal ini dikarenakan terjadi ikatan antar logam intermetallic matrik Al dengan U₃Si₂ secara perlahan lahan yang menyebabkan pertumbuhan aglomerat semakin besar dengan naiknya temperatur. Pertumbuhan aglomerat pada pemanasan 900°C ini terjadi karena proses rekristalisasi senyawa U₃Si₂-Al. Pada saat proses pabrikasi PEB U₃Si₂-Al, inti elemen bakar U₃Si₂ mengalami deformasi dengan tegangan sisa tertentu, sehingga sewaktu dilakukan pemanasan dalam tungku DTA pada temperatur 900°C atau di atas temperatur rekristalisasi U₃Si₂. Inti elemen bakar (meat) U₃Si₂-Al mengalami pengintian yang diikuti pertumbuhan aglomerat dengan arah orentasi yang berbeda-beda. Hasil analisis komposisi dengan menggunakan EDS menunjukkan bahwa aglomerat yang terbentuk pada Gambar 6, posisi-2 mempunyai perbandingan atom U : AI : Si = 20,9 : 62,57 : 16,53. Pembentukan aglomerat pada posisi-3 mempunyai ukuran butir lebih besar dibandingkan dengan aglomerat pada posisi-3, Gambar 5. Aglomerat posisi-3 pada Gambar 6 mempunyai orentasi dan gaya gerak ke arah aglomerat yang terbentuk pada posisi-2. Hal ini menunjukkan bahwa aglomerat dengan ukuran kecil akan berdifusi ke dalam aglomerat

dengan ukuran lebih besar. Hasil analisis dengan menggunakan EDS menunjukkan bahwa aglomerat pada posisi-3 Gambar 6 mempunyai perbandingan atom U : AI : Si = 15,08 : 67,95:16,97, sedangkan pada posisi-1 Gambar 6 terlihat dominan terdiri dari unsur Al dengan perbandingan atom U : AI : Si = 5,68 : 93,06 : 1,26.

Mikrostruktur PEB U₃Si₂-AI hasil pemanasan pada temperatur 1350°C seperti yang ditunjukkan pada Gambar 7

Gambar 7. Mikrostruktur PEB U₃Si₂-Al pada pemanasan 1350°C

Gambar 7 jelas terlihat Pada pengikatan ikatan elemen bakar U₃Si₂ oleh lelehan matrik Al dan kelongsong AlMg2 semakin besar. Fenomena ini menyebabkan pembentukan dan pertumbuhan aglomerat semakin besar dengan orentasi yang teratur. Hal ini dapat terjadi karena pertumbuhan pemanasan 1350°C aglomerat pada mengalami pertumbuhan lebih cepat karena pergerakan atom antar partikel lebih cepat dengan naiknya temperatur pemanasan. Aglomerat yang terbentuk pada pemanasan 650°C dan 900°C dengan butir lebih kecil secara teratur berdifusi ke aglomerat yang mempunyai butir lebih besar dan membentuk suatu aglomerat dengan ukuran butir yang lebih besar dengan jarak antar butir semakin kecil seperti yang terlihat pada posisi-2. Mikrostruktur PEB U₃Si₂-Al pada pemanasan 1350°C ini selain terjadi pertumbuhan aglomerat juga terbentuk butir dendrit seperti yang terlihat pada Gambar 7, posisi-3. Dendrit yang terbentuk disebabkan adanya lelehan Al dan pada proses pendinginan mengalami pembekuan melalui mekanisme pengintian dan pertumbuhan butir. Hal ini didukung oleh data analisis dengan menggunakan alat DTA di mana proses pendinginan pada temperatur 600°C terjadi reaksi solidifikasi unsur Al seperti yang ditunjukkan pada Gambar 1. Hasil menggunakan analisis komposisi alat SEM/EDS, aglomerat yang terbentuk posisi- 2 pada Gambar 7 mempunyai perbandingan atom U : AI : Si = 58,88 : 22,86: 18,26. Sementara itu, dendrit yang terbentuk pada posisi-3 mengandung unsur Al lebih besar mempunyai yang mempunyai perbandingan atom U: AI : Si = 10,84 : 85,39 : 3,77 yang relatif sama dengan posisi -1 tetapi mempunyai perbandingan atom U : AI : Si = 7,46 : 82,94 : 10.61.

b. Analisis mikrostruktur PEB U₃Si₂-AI TMU 2,96 gU/cm³ pasca iradiasi

Pengamatan mikrostruktur PEB U₃Si₂-AI TMU 2,96 gU/cm³ pasca iradiasi mengalami beberapa kendala. Hal ini disebabkan karena beberapa alat dukung belum siap digunakan dan juga kondisi *hotcell* yang belum bersih dari kontaminasi, sehingga pelaksanaan pengujian mikrostruktur dengan Mikroskop Optik belum dapat dilaksanakan secara optimal.

Gambar 8. Mikrostruktur kelongsong PEB U₃Si₂-Al (bagian atas)

Namun dengan keterbatasan peralatan, preparasi metalografi dapat dilakukan sampai kondisi poles mengunakan pasta intan ukuran 0,25 mikro. Hasil analisis mikrostruktur PEB U₃Si₂-AI TMU 2,96 gU/cm³ pasca iradiasi hasil potongan PEB U₃Si₂-AI TMU 2,96 gU/cm³ pasca iradiasi bagian atas *(top)* ditunjukkan pada Gambar 8, sedangkan mikrostruktur hasil potongan bagian tengah *(midlle)* dan bawah *(bottom)* masing-masing ditunjukkan pada Gambar 9 dan 10. Dari masing-masing analisis mikrostruktur terlihat adanya penampang lintang lapisan oksida pada permukaan bahan kelongsong. Hal ini terjadi disebabkan oleh proses oksidasi kelongsong AlMg2 dengan udara di dalam kolam air pendingin.

Gambar 9a, 9b dan 9c menunjukkan mikrostruktur pada zona inti elemen bekar (IEB) terlihat partikel U₃Si₂ berinteraksi dengan matrik Al membentuk fasa baru atau senyawa intermetalik U(Al,Si)x^[10]. Fasa baru tersebut ditunjukkan dengan warna abu-abu terang dengan ketebalan sekitar 1-3 mikron. Adanya fasa baru senyawa U(Al,Si)x tersebut diperjelas dengan melakukan pengamatan mikrostruktur pada zona inti U₃Si₂-Al seperti yang ditunjukkan pada Gambar 9a dan 9c.

Gambar 9a. Layer senyawa U(Al,Si)_x pada inti U₃Si₂-Al (bagian tengah)^[11]

Gambar 9b. Layer U(Al,Si)x di inti U₃Si₂-Al (bagian tengah)^[10]

(Aslina Br.Ginting, Maman Kartaman, Supardjo)

Gambar 9c. Layer U(Al,Si)x pada inti U₃Si₂-Al (bagian tengah)^[11]

Penelitian lain menyatakan bahwa untuk bahan bakar U₃Si-AI yang telah mengalami iradiasi hingga *burn-up* 60% mengalami interaksi antara partikel bahan bakar U₃Si dengan matrik Al^[12]. Mikrostruktur bahan bakar yang diamati menggunakan mikroskop optik menunjukkan adanya reaksi antara partikel U₃Si dengan matrik Al seperti ditunjukkan pada Gambar 9d. Ketebalan *layer* yang dihasilkan sekitar 5 mikron untuk *burn-up* 40% dan 20 mikron untuk *burn-up* 80%

Gambar 9d. Mikrostruktur partikel bahan bakar U₃Si dengan matrik Al^[12]

Mikrostruktur PEB U₃Si₂-Al TMU 2,96 gU/cm³ pasca iradiasi hasil potongan PEB U₃Si₂-Al TMU 2,96 gU/cm³ pasca iradiasi bagian bawah *(bottom)* ditunjukkan pada Gambar 10.

Gambar 10. Mikrostruktur kelongsong PEB U₃Si₂-AI (bagian bawah)^[11]

Analisis mikrostruktur PEB U₃Si₂-Al TMU 2,96 gU/cm³ pasca iradiasi hasil potongan PEB U₃Si₂-Al TMU 2,96 gU/cm³ pasca iradiasi bagian bawah *(bottom)* dan bagian atas *(top)* menunjukkan hasil yang hampir sama. Pada permukaan bahan kelongsong AlMg2 terlihat adanya penampang lintang lapisan oksida yang terjadi karena adanya intekasi kelongsong AlMg2 dengan air pendingin di dalam kolam reaktor.

Hasil pengamatan mikrostruktur PEB U₃Si₂-Al iradiasi pasca diatas memperlihatkan bahwa pengamatan dan pengujian mikrostruktur dengan mirksokop optik mampu menunjukkan perilaku bahan selama iradiasi. Lapisan oksida pada permukaan kelongsong dan juga senyawa U(Al,Si)x pada intermetalik antarmuka dispersan U₃Si₂ dengan matrik Al dapat terlihat dengan jelas. Untuk itu pada pengujian mikrostruktur yang akan dilakukan di IRM terhadap bahan bakar PEB U₃Si₂-Al TMU 4,8 maupun 5,2 gU/cm³, secara dilakukan keseluruhan dapat dengan mengikuti tahapan preparasi metalografi hingga sampel kondisi poles sampei 1 atau 1/4 mikron dan pengamatan menggunakan mikroskop optik pada perbesaran optimum hingga perbesaran 500 atau 1000 kali.

SIMPULAN

Interaksi termokimia pada PEB U₃Si_{2-AI TMU 2,96 pra iradiasi terjadi antara} bahan bakar U₃Si₂ dengan matrik Al maupun kelongsong AIMg2 mulai pada temperatur pemanasan 550°C. Pada temperatur 630°C terjadi peleburan matrik Al dan kelongsong AIMg2 dan lelehan matrik AI dan kelongsong AIMg2 secara langsung berinteraksi dengan U₃Si₂ membentuk aglomerat dengan senyawa baru U(Al,Si)x dan UAlx pada temperatur 900°C dan 1350°C. Dari analisis mikrostruktur diketahui bahwa pembentukan aglomerat terjadi semakin besar dengan temperatur pemanasan. meningkatnya Sememtara itu, dari analisis mikrostruktur PEB U₃Si₂₋AI TMU 2,96 pasca iradiasi, terlihat jelas adanya lapisan oksida serta interaksi partikel U₃Si₂ dengan matrik AI membentuk fasa baru atau senyawa intermetalik U(AI,Si)x. Fasa baru tersebut ditunjukkan dengan warna abu-abu terang dengan ketebalan sekitar 1-3 mikron.

DAFTAR PUSTAKA

- I. P. Hastuti, T.M. Sembiring, Suparjo, Suwardi, (2010), "LAK Insersi Elemen Bakar Uji Silisida 3 Pelat Tingkat Muat 4,8 dan 5,8 gU/cm³ di Teras RSG-GAS", PRSG-BATAN.
- [2] R.F. Domagala, T.C. Wincek, J.L. SnelgrovE, M.I. Homa and R.R. Heinrich, (1992), "DTA Study of U₃Si₂ -AI and U₃Si₂ - AI Reactions", IAEA -TECDOC - 643(4).
- [3] A. Br. Ginting, D. Anggraini, Boybul, A. Nugroho, R. Kriswarini, (2014), Bunga Rampai, Proseding Hasil penelitian Pusat Teknologi Bahan Bakar Nuklir, Pusat Teknologi Bahan bakar Nuklir-BATAN, ISBN: 978-602-71975-0-3.
- P. Toft, A Jensin, (1995), "Differential Thermal Analysis and Metalographic Examination of U₃Si₂ Powder, U₃Si₂/AI (38w/o) Minipletes", IAEA- TECDOC 643(4), page 15-122.
- [5] A. Soba, A. Denis, (2007), "An Interdiffusional Model for Prediction of the Interaction Layer Growth in the System Uranium-Molybdenum/ Aluminium" Journal of Nuclear Materials.
- [6] E. Perez, Y. H, Sohn, D.D. Keiser, (2008), "U-Mo/AI Alloys Diffusion Couples Fuel/ Cladding Interactions", NIST Diffusion Workshop, May 12, 2008, Idaho National Laboratory, University of Central Florida.

- [7] C. Kyu Rhee, S. Pyun and I. Hiun Kuk, (2011), "Phase Formation and Growth at Interface Between U₃Si and Aluminium" Korea Atomic Energy Institute, Daejon 305-606, Korea, April.
- [8] J. Allenou, O. Tougait, M. Pasturel, X. Iltis, F. Charollais, M.C. Anselmet, P. Lemoine, (2011), "Interdiffusion Behaviors in Doped Molybdenum Uranium and Aluminium or Aluminium Siliocon Dispersion Fuel: Effects of the Microstructure", Journal of Nuclear Materials.
- [9] J. Gan, B. Miller, D. Keiser, A. Robinson, P. Medvedev, D. Wachs, (2010), "TEM Characterization of Irradiated U₃Si₂/AI Dispersion Fuel", RERTR 2010-32nd, International Meeting On Reduced Enrichment For Research and Test Reactor, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415, USA.
- [10] S. Van Den Berghe, A. Leenaers, E. Koonen, P. Jacquet, L. Sannen, (2010), "Microstructure Of U₃Si₂ Fuel Plates Submitted To A High Heat Flux", SCK•CEN, Reactor Materials Research, Boeretang 200, B-2400 Mol Belgium, RERTR 2010-32nd, International Meeting On Reduced Enrichment For Research and Test Reactor, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415, USA.
- [11] F. Wang, B. Wen, L. Ren, L. Jiang, G. Li and Y. Zhou, (2011), PIE of LEU Fuel Elements With T6061 Cladding, Water Reactor Fuel Performance Meeting Chengdu, China, Sept. 11-14, 2011.
- [12] G. Ruggirello, H. Calabroni, M. Sanchez and G. Hofman, (2009), "Post-Irradiacion Examination of U₃Si_X-AI Fuel Element Manufactured And Irradiated In Argentina.