Milah Fadhilah Kusuma Fasihu, Andang Widi Harto, Isman Mulyadi Triatmoko, Gede Sutrisna Wijaya, Yohannes Sardjono

DOI: http://dx.doi.org/10.17146/tdm.2021.23.2.6290


Radiotherapy is one of the cancer treatments conducted by giving a high dose to the tumor target and minimizing the dose exposed in the healthy organs. One of the methods is proton therapy. Proton therapy is usually used in several breast cancer cases by minimizing the damage in the surrounding tissues due to having good precision. In this study, proton therapy in breast cancer will be simulated. This study aims to identify the optimal dose in breast cancer therapy using proton therapy and to identify the dose exposed in the healthy organs surrounding cancer. This study is PHITS program simulation-based to model the geometry and the components of breast cancer and the surrounding organs. The source of radiation used is proton which is the output of proton therapy with proton/sec firing intensity. The variation in beam modelling towards the dose profile of the tumor used is uniform and pencil beam. The proton energy used is 70 MeV up to 120 MeV. The result of this study shows that the dose from using pencil beam scanning technic of proton therapy for breast cancer is 50.3997 Gy (W) with the total amount of fraction is 25 and the result of dose below the threshold dose in the healthy organs is the skin gets 4.4.0553 Gy per fraction, the left breast gets 0,0011 Gy per fraction, the right breast gets 2.6469 Gy per fractions, the right lung gets 0.0125 Gy per fraction, the left lung gets 0.029 Gy per fraction, the rib gets 0.0179 Gy per fraction, and the heart gets 0.0077 Gy per fraction.

Full Text:



  1. World Health Organization, Breast Cancer. WHO. 2021. https://www.who.int/news-room/fact-sheets/detail/breast-cancer.
  2. Hug E.B. Proton Therapy for Primary Breast Cancer. Breast Care. 2018. 13(3): 168-172.
  3. Newhauser W.D., Zhang R. The Physics of Proton Therapy. Physics in Medicine and Biology. 2015. 60: 155-209.
  4. Dinesh Mayani D. Proton Therapy for Cancer Treatment. J. Oncol. Pharm. Pract. 2011. 17(3): 186-190.
  5. Otero J., Felis I., Herrero A., Merchán J.A., Ardid M. Bragg Peak Localization with Piezoelectric Sensors for Proton Therapy Treatment. Sensors (Switzerland). 2020. 20(10): 2987.
  6. Chuong M., Kaiser A., Molitoris J., Romero A.M., Apisarnthanarax S. Proton Beam Therapy for Liver Cancers. Journal of Gastrointestinal Oncology. 2020. 11(1): 157-165.
  7. Leroy R., Benahmed N., Hulstaert F., Mambourg F., Fairon N., Van Eycken E., et al. Hadron Therapy in Children – an Update of the Scientific Evidence for 15 Paediatric Cancers. 2015. KCE Report 235.
  8. Chen Y., Grassberger C., Li J., Hong T.S., Paganetti H. Impact of Potentially Variable RBE in Liver Proton Therapy. Phys. Med. Biol. 2018. 63(19): 195001.
  9. Paganetti H. Relative Biological Effectiveness (RBE) Values for Proton Beam Therapy. Variations as a Function of Biological Endpoint, Dose, and Linear Energy Transfer. Physics in Medicine and Biology. 2014. 59(22): R419.
  10. Choi J., Kang J.O. Basics of Particle Therapy II: Relative Biological Effectiveness. Radiation Oncology Journal. 2012. 30(1): 1-13.
  11. Unkelbach J., Botas P., Giantsoudi D., Gorissen B.L., Paganetti H. Reoptimization of Intensity Modulated Proton Therapy Plans Based on Linear Energy Transfer. Int. J. Radiat. Oncol. Biol. Phys. 2016. 96(5): 1097-1106
  12. Bekelman J.E., Lu H., Pugh S., Baker K., Berg C.D., De Gonzalez A.B., et al. Pragmatic Randomised Clinical Trial of Proton Versus Photon Therapy for Patients with Non-metastatic Breast Cancer: The Radiotherapy Comparative Effectiveness (RadComp) Consortium Trial Protocol. BMJ Open. 2019. 9(10): e025556.
  13. Lechner A. Particle interactions with matter. in: CERN Yellow Reports: School Proceedings. 2018.
  14. Marshall T.I., Chaudhary P., Michaelidesová A., Vachelová J., Davídková M., Vondráček V., et al. Investigating the Implications of a Variable RBE on Proton Dose Fractionation Across a Clinical Pencil Beam Scanned Spread-Out Bragg Peak. Int. J. Radiat. Oncol. Biol. Phys. 2016. 95(1): 70-77.
  15. Sato T., Iwamoto Y., Hashimoto S., Ogawa T., Furuta T., Abe S. ichiro, et al. Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02. J. Nucl. Sci. Technol. 2018. 55(6): 684-690.
  16. Takada K., Sato T., Kumada H., Koketsu J., Takei H., Sakurai H., et al. Validation of the Physical and RBE-weighted Dose Estimator Based on PHITS Coupled with a Microdosimetric Kinetic Model for Proton Therapy. J. Radiat. Res. 2018. 59(1): 91-99.
  17. Siwi D.B. Analisis Dosis di Organ Kritis pada Terapi Globlastoma dengan Boron Neutron Capture Therapy Menggunakan Metode Simulasi MCNP5. Thesis, UGM. 2013.
  18. Hutnik M., Składowski K., Wygoda A., Rutkowski T., Pilecki B. Tolerance Doses of Critical Organs in Patients with Head and Neck Cancer Treated with Radiation Therapy. Nowotwory. 2013. 63(1): 35-47.


  • There are currently no refbacks.

PTKRN Digital Library Mendeley