MAP OF RADIOISOTOPE PRODUCTION AND BATAN RESEARCH REACTOR UTILIZATION

Endiah Puji Hastuti, Iman Kuntoro, Suwoto Suwoto, Syarip Syarip, Prasetyo Basuki, Tukiran Surbakti, Geni Rina Sunaryo, Sudarmono Sudarmono

DOI: http://dx.doi.org/10.17146/tdm.2021.23.3.6288

Abstract


Currently, Indonesia through BATAN is operating three research reactors, namely the RSG-GAS reactor with the power of 30 MWt at Puspiptek south Tangerang (the first criticality in 1987), the TRIGA 2000 reactor with the power of 2 MW in Bandung which the first criticality in 1965 with the power of 250 kW, was increased to 1 MW in 1971, and further upgraded to 2 MW in 2000. Beside that, there is Kartini reactor with a power of 100 kW located in Yogyakarta (first criticality in 1979). These reactors are quite old, and in accordance with Bapeten regulations, have carried out the first periodic safety review, to obtain a reactor license for the next 10 years of operation. In line with this, one of BATAN's current national research programs is to increase the production of radioisotopes and radiopharmaceuticals, where reactors play a very important role in the production of certain isotopes. In tracing the data obtained from operational reports related to irradiation requests from reactor users, namely PTRR, PSTNT, and PT INUKI for radioisotope production, which has been carried out in the last 5 years, May 2015 until 25 August 2020, show that the irradiation request at RSG-GAS is still not optimal. In term of the utilization of RSG-GAS, it can still be optimized, which in this case needs to be balanced with post-irradiation processing capabilities. Meanwhile, from the results of tracing and data collection, it can be shown that at this time the reactors are still operating. The utilization activities of the reactors complement each other according to their age and facilities.

Full Text:

PDF

References


  1. Umbehaun P. E. et al. Thermal Hydraulic Analysis Improvement for the IEA-R1 Research Reactor and Fuel Assembly Design Modification. World J. Nucl. Sci. Technol. 2018. 08:54–69.
  2. IAEA. Applications of Research Reactors. International Atomic Energy Agency. Vienna, 2014
  3. Alrammah I., Enhancing Utilization and Ensuring Security: Insights to Compromise Contradicting Conditions in New Research reactors: Safety and Security of Research Reactors. Nucl. Eng. Technol. 2021, 53:1479–1482.
  4. Bahrum E. S., Basuki P., Maulana A., and Pane J. S. Calculation of Neutron Flux Distribution at Piercing Beam Ports of Plate Type Research Reactor Bandung, J. Sains dan Teknol. Nukl. Indones. 2020. 21:25-30.
  5. Ekariansyah A. S., Hastuti E. P., and Sudarmono, Relap5 Simulation for Severe Accident Analysis of RSG-Gas Reactor. J. Teknol. Reakt. Nukl. Tri Dasa Mega. 2018. 20: 23-31.
  6. Kibrit E. and Aquino A., Sustainability Management System Model for Operating Organizations of Research Reactors. Int. Nucl. Saf. J. 2015. 4: 23–37.
  7. Blaauw M. et al., Estimation of 99Mo Production Rates from Natural Molybdenum in Research Reactors. J. Radioanal. Nucl. Chem. 2017. 311: 409–418.
  8. Marlina, Sriyono, Abidin, S. H, and K. Desain and Performa Prototipe Generator 99 Mo. J. Kim. dan Kemasan. 2016. 38:93-102.
  9. Kuntoro I., Pinem S., Sembiring T. M., Haryanto D., and Purwanto S. Evaluation of Equilibrium Core Operation of the RSG-GAS Reactor. J. Teknol. Reakt. Nukl. Tri Dasa Mega. 2021. 23:15-20.
  10. Setiawan D., Aziz A., Febrian M. B., Setiadi Y., and Hastiawan I. Pengembangan Teknologi Proses Radioisotop Medis 131I Menggunakan Metode Kolom Resin Penukar ion untuk Aplikasi Kedokteran Nuklir. J. Sains dan Teknol. Nukl. Indonesia. 2017. 18:15-24.
  11. Maiyesni M., Mujinah M., Witarti W., Dede D. K., Triani T. W., and Trianto T. Peningkatan Kemurnian Radiokimia Iodium-125 Produksi PRR dengan Natrium Metabisulfit dan Reduktor Jones. J. Kim. Val. 2017. 3:65–70.
  12. L. Rixson, E. Riani, Muhayatun Santoso. Characterization of Long Term Exposure of Particulate Matter at Puspiptek Serpong-south Tangerang. 2015. 11:51–64.
  13. Sutondo T., Syarip. Karakteristik Berkas pada Beam Port Tembus dan Singgung Reaktor Kartini. Ganendra Journal of Nuclear Science and Technology. 2016. 17:83-90.
  14. Sadewo P. H. and Wahyono P. I. Safety Analysis of Neutron Interaction with Material Practicum Module for the Kartini Internet Reactor Laboratory. J. Teknol. Reakt. Nukl. Tri Dasa Mega. 2020. 22:104-110.
  15. Pinem, S., Sembiring T. M., and Liem P. H. Neutronic and Thermal-hydraulic Safety Analysis for the Optimization of the Uranium Foil Target in the RSG-GAS Reactor. Atom Indonesia. 2016. 42:123–128.
  16. Theresia Rina Mulyaningsih, Wahyu Sugiarto. analysis of mineral elements and its correlation in the blood of hypertension patients and normal by NAA technique. 2013. J. Tek Reakt. Nukl. 15:150–158.
  17. Argo Satrio Wicaksono, Syarip. The analysis and Performance Test of Kartini Reactor Operation to Provide Neutron Source of SAMOP. J. Risal. Fis. 2018. 2:21–24.
  18. Endiah Puji Hastuti, Sudjatmi K. A., Sudarmono. Analysis on the Performance of the Bandung Conversion Fuel-plate TRIGA Reactor in Steady State with Constant Coolant Flow Rate. J. Teknol. Reakt. Nukl. Tri Dasa Mega. 2020. 22:41–48.
  19. Yazid P. I., Sudjatmi K.A., Reinaldy Nazar, Kamajaya K. The assessment of Bandung TRIGA Reactor Tank Radioactivity. J. Nucl. Sci. Technol. Indonesia. 2017. 18:109–116.
  20. RSG-Batan Operation Report Core No.91- 100 of the RSG-GAS Reactor, PRSG-BATAN, 2020.


Refbacks

  • There are currently no refbacks.


PTKRN Digital Library Mendeley