Lily Suparlina, Tukiran Surbakti, Surian Pinem, Purwadi Purwadi



Shutdown system in RSG-GAS reactor is using neutron absorber. There are 3 kinds of absorber material in research reactors including Ag-In-Cd alloy, B4C, and Hf. In this works, analyses of different neutron absorbers on the main safety core parameters in the RSG-GAS research reactor are selected for analyses. Their integral effects on the main neutronic core parameters important to safety issues are investigated. These parameters are core excess reactivity, shutdown margin, total reactivity worth of control rods, PPF and neutron flux . The RSG-GAS core silicide fuel is selected as the case study to verify calculations. A three-dimensional, four-group diffusion model is selected for core calculations. The well-known WIMSD-5B and Batan-3DIFF reactor codes are used to carry out these calculations. It is found that the largest shutdown margin is gained using the B4C; also the lowest PPF is gained using the Hf material. The maximum point power densities belong to the inside fuel regions surrounding the CIP (centre irradiation position), surrounded by control fuel elements, and the peripheral fuel elements beside the berrylium reflector. The greatest and least fluctuation of the point power densities are gained by using B4C and Ag-In-Cd alloy, respectively.

Full Text:



  1. Iliyasu U., Ibrahim Y. V, Umar S., Agbo S.A., Jibrin Y. An Investigation of Reactivity Efect Due to Inadvertent Filling of the Irradiation Channels with Water in NIRR-1 Nigeria Research Reactor-1. Appl. Radiat. Isot. 2017. 123: 11-16.
  2. Dawahra S., Khattab K., Saba G. A Comparative Study of the Neutron Flux Spectra in the MNSR Irradiation Sites for the HEU and LEU Cores Using the MCNP4C Code. Appl. Radiat. Isot. 2015. 104: 67-73.
  3. Dawahra S., Khattab K., Saba G. Calculation and Comparison of Xenon and Samarium Reactivities of the HEU, LEU Core in the Low Power Research Reactor. Appl. Radiat. Isot. 2015. 101: 27-32.
  4. Liem P.H., Surbakti T., Hartanto D. Kinetics Parameters Evaluation on the First Core of the RSG GAS (MPR-30) Using Continuous Energy Monte Carlo Method. Prog. Nucl. Energy. 2018. 109: 196-203.
  5. Tashakor S., Zarifi E., Naminazari M. Neutronic Simulation of CAREM-25 Small Modular Reactor. Prog. Nucl. Energy. 2017. 99: 185-195.
  6. Surbakti T., Pinem S., Suparlina L. Dynamic Analysis on the Safety Criteria of the Conceptual Core Design in MTR-type Research Reactor. Atom Indones. 2018. 44(2): 89-97.
  7. Pinem S., Sembiring T.M., Surbakti T. Core Conversion Design Study of TRIGA Mark 2000 Bandung Using MTR Plate Type Fuel Element. Int. J. Nucl. Energy Sci. Technol. 2018. 12(3): 222-238.
  8. Surbakti T., Purwadi P. Analysis of Neutronic Safety Parameters of the Multi-Purpose Reactor–Gerrit Augustinus Siwabessy (RSG-GAS) Research Reactor at Serpong. J. Penelit. Fis. dan Apl. 2019. 9(1): 78-91.
  9. Savva P., Varvayanni M., Catsaros N. Dependence of Control Rod Worth on Fuel Burnup. Nucl. Eng. Des. 2011. 241(2): 492-497.
  10. Kazeminejad H. Thermal-hydraulic Modeling of Reactivity Insertion in a Research Reactor. Ann. Nucl. Energy. 2012. 45: 59-67.
  11. Rahimi G., Nematollahi M.R., Hadad K., Rabiee A. Conceptual Design of a High Neutron Flux Research Reactor Core with Low Enriched Uranium Fuel and Low Plutonium Production. Nucl. Eng. Technol. 2020. 52(3): 499-507.
  12. Surbakti T., Pinem S., Sembiring T.M., Hamzah A., Nabeshima K. Calculation of Control Rods Reactivity Worth of RSG-GAS First Core Using Deterministic and Monte Carlo Methods. Atom Indones. 2019. 45(2): 69-79.
  13. Surbakti T., Pinem S., Sembiring T.M., Subekti M., Sunaryo G.R. Preliminary Study for Alternative Conceptual Core Design of the MTR Research Reactor. J. Phys. Conf. Ser. 2018. 962(1)
  14. Pinem S., Sembiring T.M., Liem P.H. Neutronic and Thermal-Hydraulic Safety Analysis for the Optimization of the Uranium Foil Target in the RSG-GAS Reactor. 2016. 42(3): 123-128.
  15. Pinem S., Liem P.H., Sembiring T.M., Surbakti T. Fuel Element Burnup Measurements for the Equilibrium LEU Silicide RSG GAS (MPR-30) Core Under a New Fuel Management Strategy. Ann. Nucl. Energy. 2016. 98: 211-217.
  16. Surbakti T., Imron M. Fuel Burn-Up Calculation for Working Core of the RSG-GAS Research Reactor at Batan Serpong. J. Penelit. Fis. dan Apl. 2017. 7(2): 89-101.
  17. Sheets N.D., Brookhaven M., Mughabghab S., National B., Talou P., National L.A., et al. ENDF / B-VII . 1 Nuclear Data for Science and Technology : Cross Sections , Covariances , Fission Product Yields and Decay. 2017.


  • There are currently no refbacks.

PTKRN Digital Library Mendeley