THE RADIOACTIVITY ESTIMATION OF THE IRRADIATED 13 MEV CYCLOTRON’S CONCRETE SHIELD

Isdandy Rezki Febrianto, Puradwi Ismu Wahyono, Suharni Suharni

DOI: http://dx.doi.org/10.17146/tdm.2020.22.1.5801

Abstract


The Center for Accelerator Science and Technology (PSTA) planned to install K500 concrete shield in its 13 MeV cyclotron facility (DECY-13). However, fast neutrons that are generated by this cyclotron could activate materials of the concrete. It may harm the radiation workers. In this work, we conducted simulations using ORIGEN2 and PHITS computer code to estimate the formed radioactivity and the neutron flux distribution in the DECY-13 cyclotron's concrete shield. Based on the simulation, the induced radioactivity is 2.3478 × 109 Bq, while its gamma dose rate is 22.09 µSv/m2h. The most contributed isotopes are Th-233, Ho-166, Al-28, Mn-56 and Si-31. This dose is quite high. Neutron fluxes in the rear of the simulated concrete shield are also still prominent. Accordingly, it is necessary to attach neutron shielding materials which do not generate high-intensity gamma-ray. The formed radioactivity is high; but it appears from the short half-life isotopes such as Th-233, Ho-166, Al-28, Mn-56 and Si-31. Its activity will diminish quickly after the cyclotron is off. Hence, it will be safe for radiation workers.

Keywords: Radioactivity, Concrete Shield, 13 MeV Cyclotron, Neutron Irradiation, DECY-13, PHITS


Full Text:

PDF

References


  1. Iswining F., Suprapto, Taufik, Kurnia W., Dyah Optimation of DECY-13 cyclotron magnet mapping system (Optimasi sistem pemetaan magnet siklotron DECY-13). GANENDRA Majalah IPTEK Nuklir. 2016. 19(2):55–63.
  2. Silakhudin Determining the results of radioisotope product in DECY-13 cyclotron facility (Penentuan hasil produk radioisotop fluor-18 pada fasilitas siklotron DECY-13). Jurnal Penelitian Saintek. 2016. 21(1):1–9.
  3. Silakhuddin I.A.K. Optimization of ion source head position in the central region of DECY-13 cyclotron. Atom Indonesia. 2017. 43(2):81–6.
  4. F. S. Permana, I. A. Kudus, Taufik K.W. Comparation of construction and simulation result from isochronus of cyclotron magnet DECY-13 (Perbandingan hasil konstruksi terhadap hasil simulasi dari isokronus magnet siklotron DECY-13). GANENDRA Majalah IPTEK Nuklir. 2017. 20(2):83.
  5. Saefurrochman Analysis of the PD plus gravity control as a position controller device of DECY-13 ion source (Analisis kendali PD plus gravity untuk perangkat pengatur posisi sumber ion DECY-13). Jurnal Forum Nuklir. 2018. 12(1):17–28.
  6. Tursinah, Rasito; Bunawas; Taufik; Sunardi; Suryanto H. Designing of radiation shield for the DECY-13 cyclotron using monte carlo method (Desain perisai radiasi untuk siklotron DECY-13 menggunakan metode monte carlo). in: Prosiding Pertemuan dan Presentasi Ilmiah - Penelitian Dasar Ilmu Pengetahuan dan Teknologi Nuklir 2016. Surakarta. 2016. pp. 231–5.
  7. Hajdú D., Dian E., Klinkby E., Cooper-Jensen C.P., Osán J., Zagyvai P. Neutron activation properties of PE-B4C-concrete assessed by measurements and simulations. Journal of Neutron Research. 2019. 21:87–94.
  8. Kumagai M., Sodeyama K., Sakamoto Y., Toyoda A., Matsumura H., Ebara T., et al. Activation reduction method for a concrete wall in a cyclotron vault. Journal of Radiation Protection and Research. 2017. 42(3):141–5.
  9. Irzon R. Geochemical character of coastal sediments from southern kulon progo with implications for provenance (Komposisi kimia pasir pantai di selatan kulon progo dan implikasi terhadap provenance). Jurnal Geologi dan Sumberdaya Mineral. 2018. 19(1):31–46.
  10. Okuno K., Tanaka S. Activation experiment for concrete blocks using thermal neutrons. EPJ Web of Conferences. 2017. 153:2–6.
  11. Noh T. yang, Park B.G., Kim M.S. Estimation of nuclear heating by delayed gamma rays from radioactive structural materials of HANARO. Nuclear Engineering and Technology. 2018. 50(3):446–52.
  12. Ain Sulaiman S.N., Mohamed F., Rahim A.N.A.B., Kassim M.S., Hamzah N.S. Source term atmospheric release and core inventory analysis for the puspati triga reactor under severe accident conditions. Sains Malaysiana. 2019. 48(10):2277–84.
  13. Wang H., Otsu H., Sakurai H., Ahn D.S., Aikawa M., Doornenbal P., et al. Spallation reaction study for fission products in nuclear waste: Cross section measurements for 137Cs and 90Sr on proton and deuteron. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. 2016. 754:104–8.
  14. Wang H., Otsu H., Sakurai H., Ahn D., Aikawa M., Ando T., et al. Spallation reaction study for the long-lived fission product 107Pd. Progress of Theoretical and Experimental Physics. 2017. 2017(2):1–10.
  15. Yamamoto T., Iwahashi D. Validation of decay heat calculation results of ORIGEN2.2 and CASMO5 for light water reactor fuel. Journal of Nuclear Science and Technology. 2016. 53(12):2108–18.
  16. Iwamoto Y., Sato T., Hashimoto S., Ogawa T., Furuta T., Abe S.I., et al. Benchmark study of the recent version of the PHITS code. Journal of Nuclear Science and Technology. 2017. 54(5):617–35.
  17. Takada K., Sato T., Kumada H., Koketsu J., Takei H., Sakurai H., et al. Validation of the physical and RBE-weighted dose estimator based on PHITS coupled with a microdosimetric kinetic model for proton therapy. Journal of Radiation Research. 2018. 59(1):91–9.
  18. Sato T., Iwamoto Y., Hashimoto S., Ogawa T., Furuta T., Abe S. ichiro, et al. Features of particle and heavy ion transport code system (PHITS) version 3.02. Journal of Nuclear Science and Technology. 2018. 55(6):684–90.


Refbacks

  • There are currently no refbacks.


PTKRN Digital Library Ristek Mendeley