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 Due to its exposure to hazard and complexity, the identification and 

prediction of severe accident scenarios against an initiating event of a 

nuclear power plant remain a challenging task. This paper aims to 

classify severe accidents at the Advanced Power Reactor 1400MWe 

(APR1400), which include the loss of coolant accident (LOCA), total 

loss of feedwater (TLOFW), steam generator tube rupture (SGTR), and 

station blackout (SBO) using a standard Probabilistic Neural Network 

(PNN) and Particle Swarm Optimization-based Probabilistic Neural 

Network (PSO PNN). The algorithm has been implemented in 

MATLAB. The experiment results showed that supervised PNN PSO 

could classify severe accident of nuclear power plant by 19.4-point 

percent better than the standard PNN. 
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1. INTRODUCTION 

As a complex and large system, nuclear 

power plant has a high probability to endure a 

fault and potentially damaged if severe accident 

were to happen. Among the potential fault in 

nuclear power plant are the disruption of the heat 

removal of the reactor cooling system and 

radioactive release. The failure of resolving 

these issues will undoubtedly cause a severe 

accident. A severe accident at a nuclear reactor 

is a form of accident that will result in damage to 

the core due to overheating. This occurs when 

the heat generated by the nuclear reactor core 

exceeds the  
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heat released by the cooling system due to a 

failure of the cooling system,  as a result of 

leakage or loss of flow. So that, the core 

temperature exceeds the melting point at least in 

one nuclear fuel element.  

Nuclear reactor operators attempt to 

distinguish accidents by identifying the transient 

patterns of significant parameters to classify the 

condition of nuclear power plant after the 

accident occurrs. Since there are hundreds of 

instruments that display typical patterns of 

transients in the reactor, operator may not be able 

to predict the major scenario of severe accident 

accurately. In order to manage severe accident, it 

is important to classify the initiating events, such 

as loss of coolant accident (LOCA), total loss of 

feedwater (TLOFW), steam generator tube 

rupture (SGTR), and station blackout (SBO). 

The knowledge of this initiating event is 

extremely important for the operators to be able 

to manage accidents, since the safety 

performance does not rely only on technical 

matters but also on human performance of 

nuclear power plant operator[1].  
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Failure of detecting and managing the initial 

event will cause the residual heat to damage or 

even melt the reactor core. Following this event, 

hydrogen will be generated in the reactor, which 

can potentially cause explosion. 

For many years, the implementation of artificial 

intelligence has been commonly used in nuclear 

engineering areas such as diagnostics[2, 3],  

anomalies detection[4, 5], and signal validation[6]. 

Artificial neural networks (ANNs) capability of 

modeling complex systems without demanding an 

explicit knowledge among the variables becomes 

its strength over other approaches. The probabilistic 

neural network (PNN) is a neural network 

implementation of a Bayesian classifier that takes 

relative similarity of events and distinguish 

transients with identical signal forms. 

 Owing to the simplicity of training, PNN 

becomes a viable device for tackling many 

classifications and approximation problems [7 -9].  

In nuclear area, PNN has been utilized for detection  

component and instrumentation diagrams of nuclear 

power plant[10], monitoring of nuclear power plant 

condition[11, 12], and rapid source term 

prediction[13]. 

 PNN is designed to be straightforward and does 

not depend on training. However, standard PNN 

often requires all neuron in the training class to 

become redundant, and it can cause a large 

structure, which results in high computation time. 

Smoothing parameter plays an important role in the 

PNN, in order to make its classification capability 

better.  

In relation to nuclear power plant, the 

classification of an initiating severe accident by 

using a standard PNN has been previously made. 

However, the data used for testing is limited and 

the recognition rate was not mentioned. This paper 

aims to classify the initiating event of severe 

accident nuclear power plant, such as LOCA, 

TLOFW, SBO, and SGTR, by using supervised 

PNN. The PNN was supervised using Particle 

Swarm Optimization (PSO) algorithm. PSO is a 

heuristic and real coded algorithm, andwas 

originally credited to Kennedy and Eberhart[14]. 

Primarily, it was intended to simulate social 

behaviour. In nuclear area, PSO has been used to 

investigate to the nuclear reactor reload 

optimization problem [15], PWR power distribution 

flattening, and critical heat flux prediction[16]. 

Combination of backpropagation neural networks 

and PSOhas been investigated in development of 

nuclear reactor control[17].  

 

 

2. SEVERE ACCIDENT OF PWR REACTOR. 

  The Advanced Power Reactor 1400 

(APR1400) is apressurized water reactorthat uses 

two coolant loops (primary and secondary loop). 

Primary loop is arranged as two closed loops 

connected in parallel to the nuclear reactor vessel. 

Each loop consists of two reactor coolant pumps, a 

steam generator, a 1.07 m ID hot leg pipe and 0.76 

m ID cold leg pipes, and a pressurizer. The 

isometric view of APR1400 reactor was shown in 

Figure. 1. Primary loop removes the heat generated 

by fission reaction in the reactor core at high 

pressure. Secondary loop receives heat from the 

primary loop in the steam generator,generate the 

steam, and transfer the energy to generate 

electricity. Heat generated from the reactor core 

must always be removed by the reactor coolant 

system. If accident occurs, then heat removal will 

be disrupted. The heat from reactor core is still 

generated by reactions from delayed neutron 

although reactor core was already shutdown. This 

residual heat needs to be removed from the core by 

reactor cooling system. Failure of heat removal 

would cause a reactor accident. An accident such as 

LOCA is caused by leakage or rupture of primary 

loop pipe e.q. hot leg pipe and cold leg pipe. This 

leakage could be affected by pipe corrosion or 

broken due to earthquake. 

 

Fig. 1. APR1400 isometric view 

 

For this work, severe accident scenarios of the 

reactor that would be identified are hot leg LOCA, 

cold leg LOCA, TLOFW, SGTR, and SBO. The 

data of severe accident scenarios of APR1400 was 

classified into five conditions. Original data was 

postulated and generated by using MAAP4 code, 

because it is difficult to get real data for severe 

accident of nuclear reactor. The feature space of the 

data is two dimensions e.q. break size and scram 



                 Yoyok Dwi Setyo Pambudi / Tri Dasa Mega Vol. 23 No. 3 (2021) 99–104                                                                        101 

 

time. Some training samples for work 1 are shown 

in Table 1. 

 
Table 1. Severe Accident Event (sample) 

Break size (m
2
) Scram time (s) Classification 

0.00051 917.94 1 

0.00079 602.84 1 

0.00114 398.38 1 

0.00155 282.76 1 

0.00203 206.04 1 

0.00257 158.09 1 

0.00535 73.163 1 

0.00051 583.02 2 

0.00079 351.11 2 

0.00114 228.50 2 

0.00155 165.14 2 

0.00317 77.949 2 

0.00383 64.398 2 

0.00383 64.298 3 

0.00045 45.792 3 

0.00090 45.880 3 

0.00180 45.25 3 

0.00000 46.3079 4 

0.00000 0.001 5 

0.00000 0.015 5 

0.00000 0.002 5 

Note: 1: Hot leg LOCA 2: Cold Leg LOCA 3: Steam 

Generator Rupture 4: Total Loss of Flow Accident 5: Station 

Black Out 

 

For the SBO and TLOFW accidents, the value 

of break size of coolant pipe is zero, because in this 

scenario there is no break/rupture in water 

circulation pipe of the reactor. SBO is a condition 

when the power supply for reactor immediately 

shuts down. This condition makes control rod drop 

(SCRAM) automatically. TLOFW is a loss of water 

flow in primary loop that can be caused of the drop 

of all cooling pumps. For testing the proposed 

method, data from this work was generated at 

random in range 95% to 100% of the original data. 

Data generation is done to obtain a variety of 

hundreds of data, because in reality, physical 

measurements have an error precision about ± 5%. 

This data generation is also used to test the 

algorithm with variations of data. After generation, 

the total data of severe accident event of the reactor 

become 1000 data. This data consists of 200 data of 

hot-leg LOCA, 200 cold-leg LOCA, 200 data of 

TLOFW, 200 data of SGTR accident, and 200 data 

of SBO. To examine the event classification by the 

neural network, the data are separated into training 

data and verification/testing data. The training data 

are used to train the neural network and verification 

data are used to independently examine it. 

Data was normalized by z–score, before 

processing data with algorithm. The formula of z-

score can be written as follow. 

    
       

    

 (1) 

Where   is input data,  is mean of data, and 

is standard deviation. 

3.   METHODOLOGY 

3.1.    Supervised Probabilistic Neural Network     

          (PNN)  

  This work proposes a supervised PNN 

structure using PSO to find appropriate smoothing 

parameter of PNN. PNN It was first introduced by 

Specht[13], PNN was generally used for pattern 

classification problems. PNN network was trained 

by assigning each training neuron to a pattern unit 

according to its class. The advantage of PNN is that 

training is simple and momentary. PNN consist of 

four-layer neural network i.e., input unit, pattern 

unit, summation unit, and output unit layer. PNN 

architecture was shown in Figure 2.  

 

Fig. 2. Probabilistic neural network architecture 

The input layer just merely distributes the input to 

the neurons without any calculation. Pattern layer 

calculates while receiving   from input layer. 

        
 

            [ 
       

        

   ]              (2) 

 

Where      is pattern layer value,    is neuron input,   

is dimension of the pattern vector,   is the 

smoothing parameter and     is the class neuron 

vector.  For a single population the probability 

density function         is calculated by.

inx inx
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where    express the total number of samples in 

class.  The summation layer computes the 

maximum similarity of pattern   being classified 

into    by summarizing and averaging the output of 

all neurons that have a place with a similar class. 

           {      }                         (4) 

where      denotes the approximated class   of the 

pattern and   is the total number of classes in the 

training samples.  

3.2. Particle swarm optimization for smoothing 

parameter optimization 

PSO is one of the current heuristic algorithms. 

It was created through simulation of abridged social 

environment, and has been found to be firm in 

clarifying nonlinear optimization problems. PSO 

can deliver solutions with stable convergence 

characteristic at a high speed. The optimization 

technique of PSO was developed based on the 

behavior of a group of insects or birds.  Any 

individual or particle act in a dispersed way by 

using their own intelligence and also influenced the 

behavior of the cumulative group. Thus, if a 

particle or a bird discovers the right path or short 

parth heading to the food source, the rest of the 

group will be able to follow the path soon despite 

their own location in the group.  The basic particle 

position and velocity update equation can be 

represented as Eq. 5. 

                    [             ]    

    {             ] 

                                 

                j=1,2, 3,...N                          (5) 

Where  is velocity of particle i at iteration j, 

, is positive values of acceleration coefficient, 

,   is random number between 0 and 1,  is 

best location of each particle,   is best location 

of neighbors, and   is velocity of particle i.  

    Original PSO has the disadvantage that the 

speed is excessively fast so that the minimum value 

of the objective function is often passed. The 

improvement of PSO were done by addition of an 

inertial weight     to reduce velocity speed. Inertia 

weight is updated using Eq. 9. Therefore, with 

increasing iteration, the inertial weight will linearly 

be decreased.  

                                      

                      (6) 

         (
           

 
)   (7) 

where   is iteration number 

                  (8) 

          (
         

    
) (9) 

    During the PSO training, the particle which has 

the inferior position is found and replaced with the 

best position particle in the swarm [18]. This 

modification is done by inserting the coefficient c3 

into Eq. 5 and the equation become Eq. 10. 

                       (10) 

   While the value of the coefficient    was 

chosen randomly in the range [0.1, 0.5]. This work 

was carried out in the Matlab environment. An 

algorithm of modified PSO to acquire optimal 

smoothing factor of PNN given in Figure 3 as 

following:  

Begin 

FOR each Particle 

   Initialize Particle 

End 

FOR each Particle 

  Determine fitness function by particle i.e., number of miss 
recognition rate of PNN. 

   If fitness value is exceeding than the best fitness in history   

   Set current value as the new best particle 

   update its position (i.e., smoothing factor) 

   WHILE maximum iterations or measures accomplished, then 
stop the iteration 

End. 

Fig. 3. Algorithm code of PSO PNN 

4. RESULT AND DISCUSSION 

Computer work conducted to determine the 

performance comparison between standard and 

supervised PNN. At first, standard PNN was used 

to classify severe accident nuclear reactor. Before 

running the PNN algorithm, the smoothing 

parameter should be inputted. The value of optimal 

smoothing should be chosen less than the standard 

deviation of the observed data. The smoothing 

parameter was frequently chosen at small or large 

number[19]. Based on this criterion, the value of 

jV 1c

2c

1r 2r bestP

bestG

jX
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smoothing parameter for standard PNN was chosen 

to be 0.1 and 1.  

The proposed calculation was tried by utilizing 

the consistent data set which was generated by 

using MAAP4 code. In PNN we called a training 

data as a class neuron and testing data as testing 

neuron. For this experiment the number of each 

class neuron and testing neuron was chosen in a 

combination 50-150, 50-200, 100-100, and 100-

200. The recognition rate result for standard PNN 

algorithm is shown at Table 2.  
 

Table 2. Recognition rate result of standard PNN 

algorithm 

 Class & Test Neurons Combination 

 50-150  50-200 100-100 100-200 

      75.5% 76.5% 76.8% 76.8% 

    64.53% 64.4% 64.40% 64.60% 

 

The recognition rate for combination 50-150 is 

64.3% for smoothing parameter (   was set   and 

75.5% if smoothing parameter was set in 0.1. The 

highest recognition rate was 76.8% for   
      and 64.60% for      , theywere obtained 

in the combination of class 100 neurons and 200 

class neurons tests. This mean that all data is used 

as class sources. The result indicating that the lower 

smoothing parameter could give the higher 

recognition rate. 

To find appropriate smoothing parameter of 

PNN, initial number iteration for PSO was set 50, 

number of swarms was 30, boundary of smoothing 

parameter was set in  the range of [-10, 10]. Inertial 

weight max is 0.9 and weight min is 0.4. Parameter 

for optimized PNN PSO is shown in Table 3. 

Table 3. Parameter for Optimization PNN PSO 

Parameter Value 

Iteration number (K)  50 

Particle swarm size (S) 30 

Minimum first confidence  

coefficient (       
1.5 

Maximum first confidence  

coefficient (       
2.5 

Minimum inertia (    ) 0.4 

Maximum inertia (    ) 0.9 

 

The recognition result of Supervised PNN (PNN 

PSO) algorithm for this work was shown in Table 

4.  

 

 

 

 

 

Table 4. Recognition rate result of PNN PSO algorithm 

 Class & Test Neurons Combination 

 50-150 50-200 100-100 100-200 

Recognition 

rate 
92.4%  95.3%  93.4%  96.5% 

Smoothing 

parameter  
0.000328 0.0503 0.0020 0.0012 

 

The largest recognition rate of 96.5% was 

obtained in combination of 100 class neurons and 

200 test neurons. The smoothing value of this 

combination is 0.0012. Meanwhile the combination 

50-150 has a less recognition rate of about 92.4% 

using smoothing parameter of 0.00038.  It can be 

shown from the work that standard PNN using 

      achieves 76.40% averaged recognition 

rate. Meanwhile, supervised PNN using PSO could 

achieve 94.40% averaged recognition rate. This 

result shows that the combination of 100-200 could 

obtain the best result of the recognition rate. 

The reason is the attachment PSO algorithm on 

PNN could find appropriate smoothing parameter 

for the classification. Compared to the standard 

PNN, The proposed PNN PSO is better by 19.4-

point percent.  

After several training and testing, the proposed 

PNN-based PSO algorithm could classify five kinds 

of  accidents on nuclear reactors such as hot leg 

LOCA,  cold leg LOCA, SGTR, TLOFW and SBO 

using the reactor scram time and break size data. 

The scram time is the short time integration of 

some selected signals immediately after reactor 

scram, and break size of pipe tube in reactor.   

5. CONCLUSION 

This paper presented supervised probabilistic 

neural network based on particle swarm 

optimization for classifying the initiating events 

under severe accident of nuclear power plant. The 

work shows that standard PNN achieves 76.40% 

averaged recognition rate, while supervised PNN 

by PSO could achieve 94.40% averaged recognition 

rate. The largest recognition rate of 96.5% was 

obtained in a combination of 100 class neuron and 

200 test neurons. These results suggest that the 

PNN optimized by PSO could precisely allocate a 

lot of data of represented accident in AP1400 

reactor like hot leg LOCA, cold leg LOCA, SGTR, 

TLOFW, and SBO. 
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