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ABSTRACT 

ANALYSIS OF REACTIVITY COEFFICIENT CHANGE DUE TO BURN UP IN AP1000 
REACTOR CORE USING NODAL3. One of the important things in reactor safety is the value of 
inherent safety parameter namely reactivity coefficient. These inherent safety parameters are fuel and 
moderator temperature coefficients of reactivity.  The objective of the study is to obtain the change of 
those reactivity coefficients as a function of fuel burn up during the cycle operation of AP 1000 reactor 
core. Fuel and moderator temperature coefficients of reactivity and in addition moderator density 
coefficient of reactivity were calculated using SRAC 2006 and NODAL3 computer codes. Cross section 
generation of all core material was done by SRAC 2006 Code. The calculation of core reactivity as a 
function of temperature and burn up were carried out using NODAL3 Code. The results show that all 
reactivity coefficients of AP 1000 reactor core are always negative during the operation cycles and the 
values are in a good agreement to the design. It can be concluded that the AP 1000 core has a good 
inherent safety of its fuel 
 
Keywords: reactivity coefficient, burn up, AP1000, NODAL3. 
 

ABSTRAK  

ANALISIS PERUBAHAN KOEFISIEN REAKTIVITAS AKIBAT FRAKSI BAKAR TERAS 
REAKTOR AP1000 MENGGUNAKAN NODAL3.  Salah satu hal yang sangat penting dalam analisis 
kecelakaan pada reactor daya adalah koefisien reaktivitas untuk mengontrol daya reaktor. Penelitian ini 
bertujuan menentukan koefisien reaktivitas akibat perubahan fraksi bakar pada reaktor AP1000. 
Koefisien reaktivitas yang akan dihitung adalah koefisien reaktivitas bahan bakar dan moderator yang 
sering disebut inherent factor. Selain itu juga akan dihitung koefisien konsentrasi boron dan kerapatan 
moderator.  Semua koefisien reaktivitas ini dihitung saat terjadi perubahan fraksi bakar untuk 
mempertimbangkan produk fisi dan konsumsi bahan bakar. Perhitungan neutronik teras reactor 
disimulasi dengan menggunakan program SRAC2006 dan NODAL3. Perhitungan tampang lintang 
seluruh perangkat bahan bakar dan batang kendali reaktor AP1000 dilakukan dengan program 
SRAC2006. Perhitungan parameter neutronik sebagai fungsi temperature dan fraksi bakar dilakukan 
menggunakan program NODAL3. Perhitungan koefisien reaktivitas ditentukan berdasarkan perbedaan 
nilai reaktivitas. Hasil perhitungan menunjukkan bahwa koefisien reaktivitas teras reaktor AP 1000 
selalu berharga negative untuk sepanjang siklus operasinya dan mendekati harga desain. Kesimpulan 
yang dapat ditarik adalah bahwa teras AP 10000 mempunyai keselamatan melekat yang baik. 
 
Kata kunci:  koefisien reaktivitas, fraksi bakar, AP 1000, NODAL3. 
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INTRODUCTION 

BATAN is assigned to be a Technical Support Organization (TSO) in nuclear power reactor 
technology, especially for pressurized water reactor (PWR) type. The AP 1000 nuclear power 
reactor was chosen as the object in this study based on considerations that this reactor has high 
electrical power of 1000 MWe with high passive safety features [1,2]. The reactor core contains 
about 157 UO2 fuel assemblies, light water (H2O) both as moderator and coolant. Each fuel 
assembly (FA) is composed of 17 x 17 arrays of UO2 fuel rods and guide tubes. The guide tube in 
the center is used for instrument guide thimbles. As the AP 1000 first core has a very high excess 
reactivity in amount of 17,01 (%Δk/k), therefore additional two types of partial reactivity control 
namely discrete burnable absorber rods(PYREX) and integral fuel burnable absorber (IFBA) were 
installed in the core. Reactivity change control and axial power distribution are carried out by 53 
rod cluster control assembly (RRCA) and 16 gray rod control assembly (GRCA) [2]. 

NODAL3 Code has been developed for evaluating the safety of reactor operation at static 
and dynamic conditions. The code has been validated for static cases PWR benchmark, such as 
IAEA-2D, BIBLIS, KOEBERG and IAEA-3D[3] and for transient cases such as NEACRP 3D 
LWR core transient benchmark [4 - 7]. Several studies on AP 1000 have been done by BATAN’s 
researcher group covering criticality, neutronic parameter analysis and reactivity coefficient 
calculations [8 - 12]. All those calculations are merely done at the beginning of cycle (BOC) 
without any consideration of the effects of burn up. At BOC, fuel material is dominated by U238 and 
U235 which have much resonance capture reactions. At the end of cycle (EOC), the U235 
concentration decreases about 60% and some amount of plutonium are produced. This condition 
causes a change of reactivity coefficient values. 

The objective of the research is to calculate the reactivity coefficients as a function of burn 
up of AP 1000 core. These parameters are very important for reactor safety analysis at all reactor 
operation conditions. Reactivity calculations shall be accurate as a function of fuel types, 
enrichment, core loading, burn up, poisoning and temperature at diffrent states of operations [13 - 
15]. The reactivity coefficients, such as fuel temperature, moderator temperature and moderator 
density reactivity coefficients were analyzed. Cross section and core calculations were performed 
using SRAC2006 Code [16] generatrion and NODAL3 Code [4], respectively. Calculations were 
conducted at hot full power (HFP) conditions for burn up from BOC to EOC. 

METHODOLOGY 

The overall calculations were performed using combination of SRAC2006 and NODAL3 
computer codes. For core reactivity calculations, NODAL3 Code needs input data of core material 
cross sections namely, fuel, control rod and structural materials. Those macroscopic cross sections 
for fuel cell were generated by SRAC2006 Code which used ENDF/B7.0 nuclear data library, to 
provide 2 groups of neutron energy. 

Reactor core was modelled in 3 dimensional cartesian coordinates. The number of nodes in 
the X, Y and Z axis are 17, 17 and 21 respectively. Calculations were carried out for a quarter core 
and axially it was devided into 19 layers. It was consisted of thickness of 20.3 cm (2 layers), 8.9 cm 
(2 layers), 24.5533 cm (15 layers). On the top and bottom of the core, there are reflectors with 24.5 
cm of thickness. 

Core configuration of AP 1000 is illustrated in Figure 1[2]. It was loaded with three type of 
enriched UO2 fuel assembly that are 2.35 w/o, 3.4 w/o and 4.45 w/o. Calculations of reactivity 
coefficient were done from the beginning of cycle (BOC) to the end of cycle (EOC). The other 
required input, namely boron concentration as a function of burn up was derived from reference 
values as shown in Figure 2. At BOC the excess reactivity of AP 1000 core was high, then, a boric 
solvent was added to the moderator/coolant. The function of added boron in moderator is to 
increase the absorber macroscopic crosssection in order to decrease the thermal utilization factor 
(f), finally decreasing the core keff. When reactor is in operation, burn up increases as boron 
concentration decreases and the reactivity is laanced to keep the value of keff = 1.   
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Figure 1. Pyrex and IFBA core configuration within the AP 1000 [2] 

 

 

Figure 2. Boron concentration as a function of burn up of AP1000 core[2] 

Core calculations were done at reactor conditions of HFP with all control rods at fully up 
positions and with the existance of boron in the moderator. Normal conditions of HFP are at fuel 
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temperature of 627oC and moderator temperature of 327oC. Reactivity coefficients were obtained 
by calculating reactivity value or multiplication factor for each step of fuel temperature and 
moderator and each step of moderator density. The temperature step was taken more or less than 5 
oC from normal operation while density step was taken more or less than 0.005g/cm3 from normal 
density. The other parameters were kept constant. 

RESULTS AND DISCUSSIONS 

At a certain value of fuel burn up, the change of core reactivity are mostly caused by the 
changes in fuel temperature, moderator temperature and moderator density. As the fuel is burned 
from the beginning to the end of operation cycles, it will be followed by the change of reactivity 
coefficients as well. Fuel temperature reactivity coefficient (FTC) is the most prompt effect as 
compared to the moderator temperature coefficient (MTC). That is why FTC is more important in 
compensating the power change during positive reactivity insertion accident.  

The content of the plutonium Pu239 raises which results in the increasing of Pu240, that has 
higher resonance capture than U238. Calculation results of U235 and U238 loss mechanisms and the 
gain of Pu239 and Pu240 are shown in Figure 3. It shows that fuel reactivity becomes more negative 
as the Pu240 raises. 

 

 
Figure 3. The consumption of fuel isotopes and production of Pu isotopes at AP1000 core 

 
The calculation results of the fuel temperature reactivity coefficient (FTC) as a function of 

burn up or operation time of AP 1000 is shown in Figure 4. It shows that as long as the operation 
cycle from burn up value between 0 and 25000 (MWD/T), hence the fuel reactivity coefficient is 
always negative. 
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Figure 4. Reactivity coefficient of fuel temperature as a function of burn up 

 
This is the case of reactivity coefficient of AP 1000 core that is always negative although the 

burn up increases. The main point is reactor will be not safe when the reactivity coefficient is 
positive. On the contrary to negative value, reactor with positive reactivity coefficient will raise the 
power when the fuel temperature rises. Therefore, fuel reactivity coefficient must be negative 
during the operation cycle. 

The calculation results of reactivity coefficients as a function fuel burn up are between –2.4 
and –1.6 pcm/oC. In comparison to the design values of –6.3 to –1.80 pcm/oC, those calculation 
values from NODAL3 are laid inside the design range. 

The value of moderator temperature reactivity coefficient (MTC) depends partly on the 
change of neutron leakage due to the moderator temperature change. The other reason of this 
change is caused by decreasing of boron and increasing of plutonium and other fission products. 
The calculation results of these coefficients are presented in Figure 5. It shows that the values are 
more negative as compared to  the fuel temperature coefficients. The values are between – 8.84 and 
– 28.0 pcm/oC which are laid in the range of design values of 0.0 to -72.0  pcm/oC 
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• Figure 5. Reactivity coefficient of moderator temperature as a function of burn up 

 
Figure 6. Reactivity coefficient of moderator density as a function of burn up 

 
Calculation results of moderator density reactivity coefficient as a function of burn up is 

presented in Figure 6. The moderator density coefficient is defined as reactivity change per unit of 
moderator density change. It is a common that effects of moderator density change is calculated at 
the same time with boron. Boron solute as reactivity control gives effect to the moderator density 
coefficient since boron density and moderator density decreases as temperatur increases. The 
decrease of boron density contributes to a positive value of the moderator coefficient. When boron 
concentration is in adequate amount,  thus the value of moderator density coefficient of reactivity 
could be more positive. This case can be seen in Figure 6 where the increase of burn up leads the 
moderator density coefficient becomes more positive, however the value are still negative.There is 
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no available design data of this parameter, then the calculation values unfortunately can not be 
compared.  

CONCLUSIONS 

Reactivity coefficients of fuel temperature, moderator temperature and moderator density as 
a function of burn up of AP 1000 reactor core have been calculated. Cross sections of fuel and core 
material were generated by SRAC2006 and burn up effects to the reactivity coefficients of AP 1000 
have been calculated by NODAL3 computer codes. All reactivity coefficients of the AP 1000 core 
have negative values and in a good agreement to the design values as the fuel burn up increases 
from the beginning to the end of operation cycle. It shows that the AP 1000 core performs a good 
inherent safety feature. 
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