ANALISIS PARAMETER KINETIKA TERAS HTR-10 DARI ASPEK STATIS DAN TRANSIEN

Jati Susilo, Tagor M. Sembiring

Pusat Teknologi dan Keselamatan Reaktor Nuklir - BATAN

ABSTRAK

ANALISIS PARAMETER KINETIKA TERAS REAKTOR HTR-10 DARI ASPEK STATIS DAN TRANSIEN. HTR (High Temperature Reactor) merupakan salah satu tipe reaktor nuklir yang menggunakan moderator grafit dan berpendingin gas helium. Indonesia sedang merencanakan untuk membangun Reaktor Dava Eksperimental (RDE) yang merupakan reaktor tipe HTR dengan daya nominal 10 MWth. Tujuan penelitian ini adalah untuk melakukan analisis keselamatan desain reaktor tipe HTR untuk mendukung program pembangunan RDE tersebut. Sebagai objek penelitian digunakan data HTR-10 Tiongkok dengan pertimbangan bahwa spesifikasi teras tersebut hampir sama dengan teras RDE. Perhitungan parameter kinetika sebagai fungsi temperatur bahan bakar dilakukan dengan paket program SRAC2006 modul CITATION terhadap model teras geometri 2dimensi arah R-Z. Input data berupa tampang lintang makroskopik homogenisasi bahan bakar bola dan pendingin helium diperoleh melalui perhitungan menggunakan modul PIJ melalui metode heterogenitas ganda. Analisis dilakukan terhadap parameter kinetika teras HTR-10 dalam kondisi statis dan transien. Dari hasil perhitungan diketahui bahwa pada kondisi transien akibat kenaikan temperatur bahan bakar, maka nilai parameter kinetika teras HTR-10 antara lain, umur neutron serempak, waktu generasi neutron serempak, fraksi neutron kasip, dan fraksi neutron kasip tiap group akan mengalami sedikit penurunan / lebih kecil, sedangkan nilai konstanta peluruhan neutron kasip tiap group hampir tidak mengalami perubahan / tetap. Sehingga perubahan daya teras reaktor masih akan berlangsung secara normal.

Kata kunci: SRAC2006, heterogenitas ganda, HTR-10, parameter kinetika, transien

ABSTRACT

KINETIC PARAMETERS ANALYSIS FOR HTR-10 REACTOR AT THE STATIC AND TRAN-**SIENT ASPECT**. The reactor of HTR (High Temperature Gas Cooled Reactor) is a type of nuclear reactor that using graphite as a moderator and cooled with helium gas. Indonesia has planned to build an experimental power reactor or RDE as a HTR type reactor with a nominal power 10 MWth. The purpose of this study is to analyze safety design of the HTR reactor to support the RDE program. As a research object, the Chinese HTR-10 core data is used, because the reactor has almost same specification to the RDE. In this study, kinetic parameters of HTR-10 core at the static and transient condition were evaluated. The calculation of the kinetic parameters value as fuction of fuel temperature were performed by SRAC2006 computer code module of CITATION for R-Z model of 2 dimentional core. Input data defining macroscopic cross section homogenization of fuel and coolant was obtained from calculation using module of PIJ through double heterogenity method. From the calculation results, it is known that during transient condition due to increase of the fuel temperature, values of the kinetic parameters such as prompt neutron lifetime, prompt neutron generation time, delayed neutron fraction, and delayed neutron fraction for each group of the HTR-10 core will be slightly decreased, whereas the delayed neutron decay constant for each group is almost unchanged. Therefore, the power change in the HTR-10 core will still proceed normally.

Keywords: SRAC2006, double heterogenity, HTR-10, kinetic parameter, transient

PENDAHULUAN

HTR (High Temperature Reactor) merupakan salah satu tipe reaktor nuklir yang ada didunia yang menggunakan grafit sebagai moderator dan gas helium sebagai pendingin (juga disebut HTGR). Dibandingkan dengan tipe reaktor-reaktor nuklir lainnya, maka reaktor HTR mempunyai kelebihan bahwa panas yang dihasilkan selain dapat digunakan sebagai pembangkit listrik juga untuk proses produksi lainnya, atau yang disebut dengan reaktor nuklir ko-generasi. Hal tersebut disebabkan karena suhu pendingin yang dihasilkan cukup tinggi vaitu dapat mencapai ~1223 K^[1]. Proses produksi yang dapat memanfaatkan suhu tinggi dari pendingin teras raktor HTR misalnya produksi gas hidrogen, desalinasi air laut, proses pencairan batu bara dan lain-lain. Beberapa reaktor tipe tersebut yang sudah pernah beroperasi misalnya AVR-45 dan HTTR-Module di Jerman, HTGR-30 di Jepang, PBMR-300 di Afrika Selatan, dan HTR-10 di Tiongkok. Kemudian, sampai saat ini juga sudah dilakukan berbagai penelitian terkait dengan karakteristik teras HTR yaitu tentang simulasi kekritisan teras ^[2-4], metode pemodelan bahan bakar *pebble* ^[5-7], pengembangan tipe bahan bakar [8-11] [12-14] desain teras reaktor pengembangan pengembangan paket program komputer ^[15, 16] dan lain-lain.

Pada saat ini, Indonesia di sedang direncanakan untuk membangun fasilitas penelitian reaktor nuklir dapat yang menghasilkan listrik yaitu yang diberi nama Reaktor Daya Eksperimental (RDE). Teras RDE merupakan tipe teras reaktor HTR dengan daya

nominal 10MWth berbahan bakar tipe bola/ pebble. Tujuan dari penelitian ini adalah untuk melakukan analisis keselamatan desain reaktor tipe HTR dalam rangka mendukung program pembangunan teras RDE tersebut. Pada penelitian ini, sebagai objek penelitian digunakan data teras HTR-10 Tiongkok ^[17] dengan pertimbangan bahwa spesifikasi teras tersebut hampir sama dengan teras RDE. Kesamaan antara teras RDE dan HTR-10 Tiongkok adalah ukuran dimensi teras aktif (jari-jari 90 cm, tinggi 197 cm), daya termal 10 MWth, ukuran bahan bakar pebble (diameter 6 cm), material kernel yang digunakan adalah UO₂ pengkayaan 17% dan lain-lain.

Salah satu parameter desain keselamatan teras adalah nilai parameter kinetika teras yang mencakup umur neutron serempak (λ), waktu generasi neutron serempak (l), fraksi neutron kasip (β_{eff}), konstanta peluruhan neutron kasip (λ_{eff}) , fraksi neutron kasip tiap group $(\beta_{eff}(i))$ dan konstanta peluruhan neutron kasip tiap group ($\lambda_{eff}(i)$). Perhitungan teras HTR-10 dilakukan dalam bentuk geometri 2 dimensi arah R-Z dengan paket program SRAC2006 modul CITATION. Salah satu *input* yang diperlukan tampang lintang makroskopik adalah homogenisasi campuran bahan bakar pebble dan moderator helium. Data tampang lintang tersebut diperoleh dari hasil perhitungan menggunakan modul PIJ melalui metode heterogenitas pemodelan ganda (double heterogeneity)^[18].

Analisis perubahan nilai parameter kinetika teras HTR-10 sebagai fungsi suhu bahan bakar dilakukan untuk mengetahui karakteristik parameter kinetika teras HTR-10 dari aspek statis dan transien. Hasil analisis tersebut dapat digunakan sebagai data dalam penilaian terhadap keselamatan operasi teras terkait dengan perubahan daya reaktor.

METODOLOGI

Untuk melakukan perhitungan nilai parameter kinetika teras HTR-10 fungsi suhu bahan bakar dengan paket program SRAC2006 modul CITATION, maka diawali dengan pemodelan kisi sel bahan bakar TRISO, pemodelan bola bahan bakar *pebble* dan pemodelan teras reaktor HTR-10. Data yang diperlukan dalam melakukan pemodelan antara lain bentuk dan ukuran geometri, densitas atom material, suhu material dan lain-lain.

Pemodelan Bahan Bakar TRISO

Seperti ditunjukkan pada Gambar 1, bahan bakar TRISO berbentuk bola kecil yang tersusun dari kernel UO₂ (impurity 4 ppm *natural* Boron) densitas 10,4 g/cm³ pengkayaan 17 % (d₁=0,05 cm), coating material yang terbuat dari lapisan-lapisan buffer layer PyC densitas 1,1 g/cm³, inner PyC layer dengan densitas 1,9 g/cm³, SiC layer dengan densitas 3,18 g/cm³ dan *outer* PyC *layer* dengan densitas 1,9 g/cm³. Ketebalan masing-masing *coating* material tersebut adalah 0,034 cm, 0,038 cm, 0,0415 cm, dan 0,0455 cm. Densitas atom dan besarnya jari-jari bahan bakar TRISO ditunjukkan pada Tabel 1.

Gambar 1. Pemodelan Bahan Bakar TRISO

Tabel 1. Densitas Atom Bahan Bakar TRISO

No	Material	Nuklida	Jari- jari (cm)	Densitas Atom (10 ²⁴ n/cm ³)
1	UO2	U-235	0,0250	3,99054E-3
	17wt%	U-238		1,92389E-2
	(Boron	O-16		4,645896-2
	4 ppm)	B-10		4,38612E-7
		B-11		1,60574E-5
2	PyC (1)	С	0,0340	5,51524E-2
3	PyC (2)	С	0,0380	9,52632E-2
4	SIC	с	0,0415	4,34304E-2
		Si		4,34304E-2
5	PyC (3)	С	0,0455	9,52632E-2

Pemodelan Bahan Bakar Pebble

Pemodelan bahan bakar *pebble* yang berbentuk bola dengan diameter luar 6 cm ditunjukkan pada Gambar 2. *Pebble* dibagi dalam dua *zone*, *zone* 1 dengan diameter 5 cm dimana terdapat bahan bakar TRISO yang terdispersi pada matrik karbon dengan jumlah sebanyak 8335 butir. Sedangkan *zone* 2 atau daerah terluar yang merupakan daerah tanpa bahan bakar dengan ketebalan 0,5 cm dan terbuat dari material karbon dengan densitas sebesar 1,73 g/cm³ (*impurity* 0,125 ppm *natural* Boron).

Gambar 2. Pemodelan Bahan Bakar Pebble

Pemodelan Teras Reaktor

Pemodelan teras HTTR-10 bentuk geometri 2 dimensi arah R-Z dan keterangan material penyusunnya ditunjukkan pada Gambar 3. dan Tabel 2. Pada siklus operasi pertama teras HTTR-10 (*first core*) tersebut mencapai kritis dengan ketinggian bahan bakar sekitar 126 cm dengan perbandingan bola bahan bakar dan *dummy* sebesar 9857:7437.

Sedangkan pada saat teras setimbang tersebut tinggi teras aktif 197 cm dengan 100% material penyusunnya adalah berupa bola bahan bakar *pebble* di dalam teras sebanyak 27000 butir. Pada saat teras setimbang pada bagian *conus* yang semula berisi bola *dummy* juga akan terisi penuh dengan bola bahan bakar *pebble*.

Gambar 3. Penomoran Material Pada Model Teras HTTR-10 Bentuk Geometri 2 Dimensi R-Z (Unit dalam cm)^[1]

	-						
No	Carbon	Nat. Boron	Keterangan				
0	8,51047E-2	4,56260E-7	Bottom Refl.				
1	7,29410E-2	3,29811E-3	Carbon bricks				
2	8,51462E-2	4,57148E-7	Top Refl.				
3	1,45350E-2	7,80384E-8	He Chamber				
4	8.02916E-2	4.31084E-7	Top Refl.				
5	Cavity						
6.7	5.38275E-2	2.88999E-7	Dummy balls				
8	7.81408E-2	4.19537E-7	Bottom Refl.				
9	8.23751E-2	4.42271E-7	Bottom Refl.				
10	8.43647E-2	2.98504E-4	Bottom Refl.				
11	8 17101E-2	1 56416E-4	Bottom Refl				
12	8 50790E-2	2.09092E-4	Bottom Refl				
13	8,00750E-2	3 58520E-5	Bottom Refl				
14	5 41118E-2	5 774565-5	Bottom Refl				
15	3,321105-2	1 783005-7	Bottom Refl				
16	9,921100-2	2.50050-7	Bottom Rofi				
17 5	5 77 7/ 75 74	3,3880000-3	востот кејт				
17,5	3, 72, 74, 73, 70	2 452 405 2	Carbon bricks				
40.0	7,05964E-2	5,405498-5	Carbon bricks				
18, 5	0,73	0.00000	Cash an haisin				
	7,97184E-2	0,00000	Carbon bricks				
19	7,611576-2	3,441665-3	Carbon bricks				
20	8,78374E-2	4,71597E-7	Reflector				
21	5,79696E-2	3,11238E-7	Reflector				
22, 2	3, 25, 49, 50, 52	, 54, 66, 67, 69,	71,80				
	8,82418E-2	4,73769E-7	Reflector				
24, 5	1,68						
	8,79541E-2	1,68369E-4	Reflector				
26	8,46754E-2	4,54621E-7	Reflector				
27	5,89319E-2	2,66468E-3	Carbon bricks				
28	6,78899E-2	1,40000E-6	Reflector				
29	4,03794E-2	1,40000E-6	Reflector				
30	6,78899E-2	3,64500E-7	Reflector				
31, 3	2,40						
	6,34459E-2	3,40640E-7	Reflector				
42	6,76758E-2	1,25331E-4	Reflector				
43, 45	8,61476E-2	4,62525E-7	Reflector				
44	8.29066E-2	4,45124E-7	Reflector				
46	7,47805E-2	3.38129E-3	Carbon bricks				
47	7.78265E-2	0.0000	Carbon bricks				
48	5,82699E-2	3,12850E-7	Reflector				
53	8.5586E-2	4,59510E-7	Reflector				
57	7.28262E-2	3.91003E-7	Reflector				
58 59 61 63							
	7.60368E-2	4.08240E-7	Reflector				
60	7.57889F-2	1.45082E-4	Reflector				
62	7 37484F-2	3 05054F-7	Reflector				
64	6 60039E-2	2 984445-3	Carbon bricks				
65	6 8607/F-7	0.00	Carbon bricks				
70	8.615005-2	4.62385-7	Reflector				
70	7.400275-2	3.300895-2	Carbon bricks				
	7.499276-2	5,590886-5	Curbon bricks				
81	7.97180E-2	0,0000	Dummy Dalis				

Tabel 2. Densitas Atom (10²⁴ n/cm³) Material Penyusun Teras HTR-10^[1]

Alur Perhitungan

Dengan kelengkapan data-data pemodelan tersebut datas, kemudian dibuat input perhitungan modul PIJ dan modul CITATION. Modul PIJ digunakan untuk perhitungan tampang lintang makroskopik homogenisasi bahan bakar pebble melalui metode heterogenitas ganda. Data pustaka tampang lintang yang digunakan adalah JENDL-3.3 dengan kondensasi kelompok energi dari 107 menjadi 16 group. Output perhitungan berupa data tampang lintang makroskopik akan tersimpan didalam folder MACRO dalam bentuk binary. Data tersebut digunakan sebagi salah satu data input modul CITATION dalam perhitungan teras. Selain itu, data yang diperlukan lainnya yaitu bentuk dan ukuran geometri teras, densitas atom material penyusun teras yang masing-maing seperti terlihat pada Gambar 3. dan Tabel 2. diatas. Perhitungan teras HTR-10 dilakukan pada teras awal dan teras setimbang dengan perubahan suhu bahan bakar 300 K, 600 K, 900 K, 1200 K, 1600 K dan 2100 K. Sebagai output perhitungan teras, maka akan diperoleh nilai parameter kinetika teras HTR-10 seperti umur neutron serempak (λ), waktu generasi neutron serempak (ℓ), fraksi neutron kasip (β _{eff}), konstanta peluruhan neutron kasip (λ_{eff}), fraksi neutron kasip tiap group ($\beta_{eff}(i)$) dan konstanta peluruhan neutron kasip tiap group $(\lambda_{eff}(i)).$

HASIL DAN PEMBAHASAN

Teras Kondisi Statis

Perbandingan hasil perhitungan parameter kinetika teras awal dan setimbang HTR-10 kondisi statis menggunakan paket SRAC2006 modul CITATION program ditunjukkan pada Tabel 3. Dari tabel tersebut dapat diketahui bahwa hasil perhitungan parameter kinetika (λ , ℓ , β_{eff} , $\beta_{eff}(i)$ dan $\lambda_{eff}(i)$) pada teras awal HTR-10 menunjukkan nilai vang lebih besar dibandingkan padga teras setimbang. Fenomena tersebut mempunyai kecenderungan yang sama terhadap data referensi yang ada yaitu nilai parameter kinetik pada teras RDE saat operasi teras awal yang juga lebih besar dibandingkan dengan saat setimbang. Nilai umur neutron serempak (λ) dan waktu generasi neutron serempak (e) pada teras setimbang menunjukkan nilai yang lebih kecil disebabkan karena pada teras setimbang sudah terbentuk nuklida-nuklida yang mempunyai tampang lintang serapan tinggi (misalnya atom Pu) sehingga neutron akan lebih cepat terserap dan lebih cepat menghasilkan neutron baru. Demikian juga untuk nilai fraksi neutron kasip (β_{eff}) dan nilai fraksi neutron kasip tiap group ($\beta_{eff}(i)$) yang menunjukkan nilai yang lebih kecil. Hal tersebut karena selain jumlah U -235 sebagian sudah berkurang karena bereaksi fisi, juga karena sebagian nuklida hasil fisi yang terbentuk sudah meluruh menghasilkan neutron dan bereaksi menjadi nuklida lainnya.

Selanjutnya, pada Tabel 3. tersebut juga dapat dilihat parameter kinetik perbandingan antara hasil perhitungan pada teras HTR-10 dengan data referensi teras RDE. Parameter kinetika pada teras HTR-10 mempunyai nilai umur neutron serempak (λ) dan fraksi neutron kasip (β_{eff}) yang lebih kecil dibandingkan teras RDE, yaitu dengan perbedaan 15% dan 1,45% pada teras awal, 6,75% dan 13,11% pada teras setimbang. Sedangkan fraksi neutron kasip tiap group ($\beta_{eff(i)}$) menunjukkan perbedaan sebesar -14,30%, 1,56%, 2,76%, -4,93%, -11,93% dan 57,20% untuk masing-masing group 1, 2, 3, 4, 5 dan 6 pada teras awal. Sedangkan pada teras setimbang menunjukkan perbedaan group 1 4,4%, group 2 13,50%, group 3 16,92%, group 4 11,92%, group 5 0,34% dan group 6 78,97%. Khusus untuk group 6 menunjukkan perbedaan yang cukup besar, baik pada teras awal (57,20%) maupun teras setimbang (78,97%). Perbedaan tersebut karena perbedaan dalam pembagian kelompok hasil fisi pada paket program yang digunakan. Hal tersebut terlihat pada perbedaan hasil perhitungan untuk group 5 yang cukup rendah, yaitu pada teras awal -11,93%.

Secara umum perbedaan antara hasil perhitungan dan data referensi tersebut disebabkan karena karena perbedaan paket program yang digunakan (VSOP v.s. SRAC2006), pembagian kelompok energi (2 group dan 16 group), data pustaka tampang lintang, dan komposisi perbandingan material antara bahan bakar pebble dan dummy di dalam teras (teras RDE 52:48 dan HTR-10 57:43).

Parameter	Data	Ref.[1]	Hasil Per	rhitungan Perbedaa		edaan		
	First Core	Equil. Core	First Core	Equil. Core	First Core	Equil. Core		
Um ur Neutron Serempak, λ (detik)	1,80E-3	1,20E-3	1,53E-3	1, 12E-3	2,73E-4 (15,17)	8,10E-5 (6,75)		
Waktu Generasi Neutron Serempak, € (detik)	-	-	1,53E-3	1, 0 3E- 3	-	-		
Fraksi Neutron Kasip, $oldsymbol{eta}_{ heta\!f\!f}$	6,90E-3	5,40E-3	6,80E-3	6,11E-3	1,00E-4 (1,45)	7,08E-4 (13,11)		
Fraksi Neutron Kasip Tiap Gro	oup, $eta_{e\!f\!f}$ (i):							
- Group 1	2,63E-4	1,93E-4	2,25E-4	2,02E-4	-3,76E-5 (-14,30)	8,50E-6 (4,40)		
- Group 2	1,47E-3	1,20E-3	1,49E-3	1, 36E-3	2,30E-5 (1.56)	1,62E-4 (13.50)		
- Group 3	1,30E-3	1,03E-3	1,34E-3	1, 20E-3	3.60E-5 (2.76)	1,69E-4 (16.92)		
- Group 4	2,82E-3	2,13E-3	2,68E-3	2, 38E-3	-1.39E-4 (-4.93)	2,54E-4 (11.92)		
- Group 5	8,90E-4	6,99E-4	7,84E-4	7,01E-4	-1.06E-4 (-11,93)	2,40E-6 (0,34)		
- Group 6	1,82E-4	1,45E-4	2,86E-4	2,59E-4	1,04E-4 (57,20)	1,15E-4 (78,97)		
Konstanta Peluruhan Neutron Kasip Tiap Group, λeff (i)								
- Group 1	-	-	1,24E-2	1,25E-2	-	-		
- Group 2	-	-	3,05E-2	3,05E-2	-	-		
- Group 3	-	-	1,11E-1	1,12E-1	-	-		
- Group 4	-	-	3,02E-1	3,03E-1	-	-		
- Group 5	-	-	1,14	1,14	-	-		
- Group 6	-	-	3,02	3,01	-	-		

Tabel 3. Hasil Perhitungan Parameter Kinetik Teras HTR-10 Kondisi Statis

Teras Kondisi Transien

Tabel 4. menunjukkan nilai parameter kinetika hasil perhitungan paket program SRAC2006 pada teras setimbang HTR 10 MW pengaruh perubahan suhu bahan bakar 300 K, 600 K, 900 K, 1200 K, 1600 K dan 2100 K. Sedangkan perubahan nilai parameter kinetika akibant kenaikan suhu ditunjukkan pada Tabel 5. Kenaikan suhu bahan bakar dari kondisi dingin Κ 300 Κ menjadi 600 akan menyebabkan umur neutron serempak (λ) dan waktu generasi neutron serempak (l) mengalami sedikit kenaikan. Hal tersebut mengandung arti bahwa neutron yang dihasilkan menjadi sedikit lebih lama untuk diserap dan bereaksi

kembali untuk menghasilkan neutron baru. Pada suhu 600 K kemungkinan tampang lintang makroskopik tumbukan material menjadi lebih besar.

Sedangkan dari kondisi operasi normal (suhu 900 K dan 1200 K) menuju ke suhu transien (1600 K dan 2100 K) terjadi penurunan umur neutron serempak (λ) dan waktu generasi neutron rerempak (ℓ). Hal tersebut disebabkan karena pada suhu transien, neutron yang dihasilkan akan lebih cepat terserap kembali oleh bahan bakar atau moderator dan sebagian akan bereaksi fisi menghasilkan neutron baru.

Parameter	Suhu (K)						
	To=300	T ₁ =600	T ₂ =900	T ₃ =1200	T ₄ =1600	T ₅ =2100	
Umur Neutron Serempak, λ (detik)	1,12E-4	1,58E-4	9,62E-5	9,12E-5	9,34E-5	7,28E-5	
Waktu Generasi Neutron Serempak, ピ (detik)	1,03E-4	1,42E-4	8,92E-5	8,71E-5	1,08E-4	6,87E-5	
Fraksi Neutron Kasip $eta_{ m eff}$	6,11E-4	5,90E-4	5,79E-4	5,71E-4	5,71E-4	5,52E-4	
Fraksi Neutron Kasip Tiap Group $eta_{eff 0 }$							
- Group 1	2,02E-4	1,92E-4	1,90E-4	1,87E-4	1,86E-4	1,79E-4	
- Group 2	1,36E-3	1,31E-3	1,30E-3	1,29E-3	1,29E-3	1,25E-3	
- Group 3	1,20E-3	1,15E-3	1,13E-3	1,12E-3	1,12E-3	1,08E-3	
- Group 4	2,38E-3	2, 30E-3	2,25E-3	2,21E-3	2,20E-3	2,13E-3	
- Group 5	7,01E-4	6,90E-4	6,68E-4	6,61E-4	6,64E-4	6,46E-4	
- Group 6	2,60E-4	2,55E-4	2,49E-4	2,46E-4	2,48E-4	2,41E-4	
Konstanta Peluruhan Neutron Kasip Tiap Group, (λ_{eff} (i)).							
- Group 1	1,25E-2	1,25E-2	1,25E-2	1,25E-2	1,25E-2	1,25E-2	
- Group 2	3,05E-2	3,05E-2	3,05E-2	3,05E-2	3,05E-2	3,05E-2	
- Group 3	1,12E-1	1,13E-1	1,13E-1	1,13E-1	1,13E-1	1,13E-1	
- Group 4	3,03E-1	3,04E-1	3,04E-1	3,05E-1	3,05E-1	3,06E-1	
- Group 5	1,14	1,15	1,15	1,15	1,16	1,17	
- Group 6	3.01	3,03	3,01	3,01	3,02	3,02	

Tabel 4. Hasil Perhitungan Parameter Kinetika Sebagai Fungsi Temperatur Teras Setimbang HTR-10

Tabel 5. Perubahan Parameter Kinetika Fungsi Temperatur Teras Setimbang HTR-10

Parameter	Nilai Perubahan (T ₀ T _n) (%)							
r ar an eeer	n=1	n=2	n=3	n=4	n=5			
Unaur Nautran Carananale 3. (datile)	-4,60E-5	1,57E-5	2,07E-5	1,85E-5	3,91E-5			
Omur Neutron Serempak, A (detik)	(-41,11)	(14,00)	(18,51)	(16,53)	(34,98)			
Waktu Generasi Neutron Serempak, ピ	-3,87E-5	1,42E-5	1,63E-5	4.70E-5	3,47E-5			
(detik)	(-37,43)	(13,77)	(15,78)	(-4, 55)	(33,53)			
Fraksi Nautran Kasin B	2,05E-5	3,13E-5	3,99E-5	4,00E-5	5,87E-5			
Fraksi Neutron Kasip, ρ_{eff}	(3,36)	(5,12)	(6,53)	(6,55)	(9,61)			
Fraksi Neutron Kasip Tiap Group $eta_{_{e\!f\!f}}$ (i):								
- Group 1	0,93E-5	1,15E-5	1,48E-5	1,54E-5	2,26E-5			
- Group 1	(4,62)	(5,71)	(7,34)	(7,64)	(11,22)			
- Group 2	4,90E-5	5,90E-5	7,50E-5	7,10E-5	11,10E-5			
- 0/00p 2	(3,60)	(4, 33)	(5,51)	(5,21)	(8,15)			
- Group 3	4,40E-5	6,40E-5	8,20E-5	8,40E-5	12,30E-5			
0.000 0	(3,67)	(5,34)	(6,84)	(7,01)	(10,26)			
- Group 4	0,88E-4	1,35E-4	1,73E-4	1,80E-4	2,55E-4			
0.00p 4	(3,69)	(5,66)	(7,26)	(7,55)	(10,70)			
- Group 5	1,12E-5	3,30E-5	4,07E-5	3,72E-5	5,59E-5			
0.000 0	(1,60)	(4,70)	(5,80)	(5,30)	(7,97)			
- Group 6	0,42E-5	1,08E-5	1,33E-5	1,18E-5	1,84E-5			
	(1,62)	(4,16)	(5,13)	(4,55)	(7,09)			
Konstanta Peluruhan Neutron Kasip Tiap Group, (λeff (i)).								
- Group 1	-1,00E-5	-1,00E-5	-2.00E-5	-2,00E-5	-3,00E-5			
- 6/6001	(-0,08)	(0,08)	(-0.16)	(-0,16)	(-0,24)			
- Group 2	-1,00E-5	2,00E-5	3.00E-5	4,00E-5	5,00E-5			
- 0/00p 2	(-0,03)	(0,07)	(0.10)	(0,13)	(0,16)			
- Group 3	-6,00E-4	-4,00E-4	-6.00E-4	-8,00E-4	-9,00E-4			
0.000 0	(-0,54)	(-0, 36)	(-0.53)	(-0,71)	(-0,80)			
- Group 4	-1,30E-3	-1,00E-3	-1.50E-3	-2,00E-3	-2,50E-3			
0.00p 4	(-0,43)	(-0, 33)	(-0.50)	(-0,66)	(-0,83)			
- Group 5	-1,00E-2	-0,80E-2	-1.20E-2	-1,80E-2	-2,30E-2			
0.0000	(-0,87)	(-0,70)	(-1.05)	(-1,58)	(2,01)			
- Group 6	-2,10E-2	-0,10E-2	-0.30E-2	-0,70E-2	1,00E-2			
0.0000	(-0,70)	(-0,03)	(-0.10)	(-0,23)	(0,33)			

Vol.21 No. 1 Februari 2017

Untuk nilai fraksi neutron kasip tiap group, kenaikan suhu bahan bakar dari kondisi dingin 300 K menjadi 600 K, suhu operasi (900 K dan 1200 K) dan suhu transien (1600 K dan 2100 K), terlihat mengalami penurunan. Hal tersebut disebabkan karena naiknya suhu bahan bakar akan menyebabkan penyerapan neutron oleh bahan bakar yang lebih besar sehingga akan menurunkan jumlah nuklida hasil fisi.

Kemudian, dari tabel tersebut juga dapat diketahui bahwa kenaikan suhu bahan bakar hampir tidak mempengaruhi besarnya nilai konstanta peluruhan neutron kasip. Hal tersebut karena λ eff (i) Merupakan suatu nilai konstanta yang tidak berubah. Berkurangnya nilai parameter kinetika teras HTR-10 antara lain λ , ℓ , β_{eff} , dan $\beta_{eff}(i)$ tersebut akan berpengaruh terhadap terjadinya perubahan daya teras terhadap waktu yang menjadi sedikit lebih lambat. Sehingga teras reaktor masih dapat dikendalikan secara normal.

KESIMPULAN

Dalam penelitian ini dilakukan analisis parameter kinetika teras HTR-10 dari aspek statis dan transien menggunakan paket program SRAC modul CITATION. Dari hasil perhitungan diketahui bahwa pada kondisi transien akibat kenaikan suhu bahan bakar. maka nilai parameter kinetika teras HTR-10 antara lain λ , ℓ , β_{eff} , dan $\beta_{eff}(i)$ akan mengalami sedikit penurunan / lebih kecil, sedangkan $\lambda_{eff}(i)$ hampir tidak mengalami perubahan/tetap. Sehingga perubahan daya teras reaktor masih dalam kondisi normal.

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih kepada Dr. Geni Rina Soenaryo. M.Sc., selaku Kepala Pusat Teknologi Dan Keselamatan Reaktor Nuklir - PTKRN BATAN atas ini sarannya, sehingga makalah dapat diselesaikan dengan baik. Selain itu, juga dorongan semangat dan bantuan rekan-rekan dari BFTR sangat kami hargai. Penelitian ini sepenuhnya dibiayai oleh pemerintah Indonesia melalui DIPA PTKRN 2015.

DAFTAR PUSTAKA

- ANONIM, "SAFETY ANALYSIS REPORT – Chapter 3.2 Reactor Core", The Document Preparation Of Preliminary Engineering Design Of The Experimental Power Reactor, BATAN, December 2015.
- MENG-JEN WANG, RONG-JIUN SHEU, JINN-JER PEIR, JENQ-HORNG LIANG, "Criticality Calculations of The HTR-10 Pebble Bed Reactor With SCALE6/CSAS6 and MCNP5", Annals of Nuclear Energy 64 (2014),page1-7.
- SEYED ALI HOSSEINI, MITRA ATHARI ALLAF, "Implementation and benchmarking of ENDFVII Based Library for PBM Reactor Analysis With MCNP4c", Juornal of Progress in Nuclear Energy 60 (2012) 27-30.
- HANS D. GOUGAR, R. SONAT SEN,
 "On The Evaluation Of Pebble Bed Reactor Critical Experiments Using The Pebbed Code", Proceedings of the

HTR 2014, Weihai, China, October 27-31, 2014, Paper HTR2014-51253.

- 5. WANG, MENG-JEN **RONG-JIUN** SHEU, JINN-JER PEIR, JENQ-HORNG LIANG. "Effect of Geometry Homogenization on The HTR-10 Criticality", Journal of Nuclear Engineering and Design 271 (2014) pages 356-360,
- MENG-JEN WANG, RONG-JIUN SHEU, JINN-JER PEIR, JENQ-HORNG LIANG, "Effects of Homogeneus Geometry Models in Simulating the Fuel Balls in HTR-10", Journal of Power and Energy Sytems Vol.6, No.3, 2012, page 394-401
- AMIN ABEDIA, NASER VOSOUGHIB, "Neutronic Simulation of a Pebble Bed Reactor Considering its Double Heterogeneous Nature", Nuclear Engineering and Design 253 (2012) page 277-284.
- CHUNHE TANG, XIAOMING FU, JUNGUO ZHU, HONGSHENG ZHAO, YANPING TANG, "Comparison of Two Irradiation Testing Results of HTR-10 Fuel Spheres", Journal of Nuclear Engineering and Design 251 (2012) 453– 458.
- 9. MING DINGA, JAN LEEN KLOOSTERMANA, "Thorium Utilization in a Small Long Life HTR. Part I: Th/U MOX Fuel Blocks", Nuclear Engineering and Design 267 (2014) 238– 244.

- MING DINGA, JAN LEEN KLOOSTERMANA, "Thorium Utilization in a Small Long Life HTR. Part II: Seed and Blanket Fuel Blocks", Nuclear Engineering and Design 267 (2014) 245–252.
- JACQUES VERRUEA, MING DINGA, JAN LEEN KLOOSTER-MANA, "Thorium Utilisation in a Small Long Life HTR. Part III: Composite Rod Fuel Blocks", Nuclear Engineering and Design 267 (2014) 253– 262.
- SUNGKOWO WAHYU SANTOSO, ANDANG WIDIHARTO, YOHAN-NES SARDJONO, "Desain Teras Dan Bahan Bakar PLTN Jenis Pebble Bed Modular Reactor (PBMR) Dengan Menggunakan Program SRAC", Jurnal Teknologi Reaktor Nuklir 'TRI DASA MEGA, Volume 16, Nomor 2, Juni 2014 109-120.
- RALIND RE MARLA, YOHANNES SARDJONO, SUPARDI, "Desain Teras PLTN Jenis Pebble Bed Modular Reactor (PBMR) Menggunakan Paket Program MCNP-5 Pada Kondisi Beginning Of Life", Jurnal Teknologi Reaktor Nukir "TRI DASA MEGA", Vol. 16 No.3 Oktober 2014, Hal. 125-133.
- 14. HAO CHEN, LI FU, GUO JIONG, WANG LIDONG, "Uncertainty and sensitivity analysis of filling fraction of pebble bed in pebble bed HTR", Nuclear Engineering and Design 292

(2015), Pages 123–132.

- 15. MIN-HAN CHIANG, JUI-YU WANG, RONG-JIUN SHEU, YEN-WAN HSUEH LIU, "Evaluation of the HTTR criticality and burnup calculations with continuous-energy and multigroup cross sections" Nuclear Engineering and Design 271 (2014) 327–331.
- H.-J. ALLELEIN, S. KASSELMANN, A. XHONNEUX, F. TANTILLO, A. TRABADELA, D. LAMBERTZ, "First Results for Fluid Dynamics, Neutronics and Fission Product Behavior in HTR Applying the HTR Code Package (HCP) Prototype", <u>Nuclear Engineering and Design Volume 306</u>, September 2016, Pages 145–153.
- 17. ANONIM, "Evaluation of High Temperature Gas Cooled Reactor Performance : Benchmark Analysis Related to initial testing of the HTTR and HTR-10", IAEA-TECDOC-1382, Nuclear Power Technology Development Section International Atomic Energy Agency, Austria, November, 2013.
- KEISUKE OKUMURA, TERUHIKO KUGO, KUNIO KANEKO, KEICHIRO TSUCHIHASHI, "SRAC2006; A Comprehensive Neutronics Calculation Code System", JAERI-Data/Code 2007-004, Japan Atomic Energy Agency, January 2007.