RANCANGAN SISTEM TRANSMISI RAK SUMBER RADIASI IRRADIATOR GAMMA UNTUK STERILISASI HASIL PERTANIAN

Sanda

1Pusat Rekayasa Perangkat Nuklir
Badan Tenaga Nuklir Nasional

ABSTRAK

RANCANGAN SISTEM TRANSMISI RAK SUMBER RADIASI UNTUK IRRADIATOR GAMMA ISG-500. Telah dirancang sistem transmisi rak sumber radiasi irradiator gamma ISG-500 yang digunakan untuk sterilisasi hasil pertanian. Rak sumber radiasi adalah salah satu perangkat irradiator gamma yang digunakan untuk meradasi hasil pertanian yang berada di dalam koli dan yang diperoleh di atas permukaan koli atau diturunkan ke dalam koli dengan peran terlepas tali sling baja dan karet. Prosos rak cian turunnya rak sumber dikendalikan oleh motor induksi dengan daya 2,5 kW yang dikoopel oleh gili reduksi dan kopling tetap. Sistem transmisi ini juga mempertimbangkan aspek gali listrik dan gali UPS ketele gali listrik solusinya adalah dengan menggunakan motor induksi secara manual. Sedangkan gerak rak sumber menuju posisi irradiasi dilakukan dengan kecepatan 1,57 m/detik dengan dua pertimbangan, yaitu agar diperoleh gerakan yang halus ketele rak sumber sampai pada teralis dan mencegah terjadinya shutdown akibat tertentunya teralis dengan rak sumber atau carrier.

Kata kunci : irradiator, rak sumber, sterilisasi

ABSTRACT

A DESIGN OF TRANSMISSION SYSTEM FOR A RACK SOURCE OF IRRADIATION OF ISG-500 GAMMA IRRADIATOR. A transmission system has been designed for a gamma source rack of irradiator ISG-500 for sterilization of agricultural products. Radiation source rack is an equipment used for the gamma irradiator to irradiate agricultural products which reside in a carrier having weight of 150 kg. The rack sources of irradiation will be pulled up or down from the pond by stainless steel sling. The process of the up and down of the sources rack is controlled by a 2.5 KW induction motor which is coupled by a gear reduction and permanent couplings. This transmission system is also considering of any electrical failure, both central electric source and UPS system, by manual system. The speed of the rack toward its position for ready for operation is 1.57 m / second with two considerations, namely in order to obtain a smooth movement when the rack until the bars of the source and to prevent shutdown due to any collision between the bar and the rack or the carrier.

Keywords : irradiator, source rack, sterilisation

1. PENDAHULUAN

Di masyarakat, makanan berupa tahu, tempe, kerupuk, ayam, daging, bakso dan banyak jenis makanan lainnya agar awet dan tahan lama banyak menggunakan boraks dan formalin, pada kedua bahan tersebut berbahaya bagi kesehatan manusia. Ada pengawetan makanan yang menggunakan bahan alami seperti diasinkan dengan garam untuk ikan atau tahu dengan menggunakan larutan kunyit, tetapi tetap saja makanan tersebut tidak bisa tahan lama sampai berminggu-minggu, karena makanan tersebut setelah 2-3 hari mengalami fermentasi atau pembusukan yang disebabkan oleh mikroba, kapang, jamur dan organisme pembusuk atau fermentasi lainnya.

Salah satu upaya untuk memperpanjang kesegaran makanan, buah-buahan, sayuran, jamu atau produk kosmetik adalah dengan cara diradiasi pada dosis yang tepat,
sehingga gen gen strukturalnya dapat mengalami perubahan yang lebih tepat dalam memperpanjang umur kebersihan hasil pertanian, produk kosmetik/jamu, produk produk tersebut selain umumnya lebih lama, kualitasnya pun terjamin dengan rasa yang tidak berubah dan kandungan protein serta mikronutriennya tetap terjaga, juga tidak menimbulkan residu atau ampera kimia. Proses iradiasi terhadap hasil pertanian, produk kosmetik/jamu menggunakan radionuklid Cobalt 60 terjadi didalam ruang iradiasi berjalan secara kontinu, walaupun carrier yang berisi tote sebagai objek material yang akan diradiasi bisa juga berhenti dengan sistem kontrol untuk melepas atau memasang tote, tapi rak sumber selama ada material yang akan diradiasi harus selalu tergantung diatas permukaan kolam.

Sistem transmisi rak sumber jalur geraknya secara vertikal turun dan naik, yaitu bergerak keatas permukaan kolam ketika proses iradiasi dan disimpan didasarkan kolam ketika tidak digunakan untuk iradiasi material. Material yang berada didalam tote carrier diradiasi oleh sumber selama beberapa menit, tergantung jenis materialnya.

Sistem transmisi rak sumber iradiasi radiator gamma belum dimiliki BATAN dan sistem transmisi ini merupakan equipment yang penting karena rak sumber hanya boleh berada diperluukan pantai ketika proses iradiasi, maka apabila tidak iradiasi rak sumber harus berada didasarkan kolam, yang menjadi masalah adalah ketika iradiasi, tiba-tiba listrik mati, maka rak sumber tidak dapat digerakkan oleh motor listrik, sekali pun ada UPS, oleh karenanya diperlukan sistem mekanik yang dapat menggerakan rak sumber turun ke dasar kolam.

Sistem transmisi rak sumber iradiasi yang terdiri atas beberapa komponen, diantaranya adalah motor listrik penggerak rak, koping tetap, siling baja, gigi reduksi, sistem mekanik penggerak manual rak dan rak sumber yang dianggap sebagai beban akan dihitung menggunakan persamaan elemen mesin. Hasil yang diharapkan adalah perubahan ukuran-ukuran equipment sistem transmisi rak sumber radiasi.

2. DASAR TEORI

Transmisi rak sumber radiasi terdiri atas beberapa komponen, diantaranya adalah motor listrik penggerak rak sumber. Motor ini menggerakkan beban rak sumber seberat 100 kg dengan perantara sling baja yang dililitkan pada drum, maka ketika motor berputar sling baja tergulung pada drum, secara otomatis rak sumber bergerak keatas menurut posisi iradiasi, sebagaimana ditunjukkan pada Gambar 1.

Ketika drum motor berputar ke kanan (ke arah B) atau menarik sling, maka rak sumber akan bergerak ke atas (ke arah B), sebaliknya bila motor berputar ke arah kiri (ke arah A) atau melepas sling, maka rak sumber akan bergerak turun ke arah dasar kolam (ke arah A). Adanya gerakan rak sumber keatas atau kebawah disebabkan oleh adanya daya motor sebagai penggerak, besarnya daya motor yang dihitung dapat dihitung dari kecepatan motor yang berputar dengan persamaan:

$$V = \frac{\pi.D.n}{i}$$
(1)
Dimana :

\[V : \text{Kecepatan linier motor (m/menit)} \]
\[D : \text{Diameter drum penggulungan sling (mm)} \]
\[n : \text{Putaran motor (rpm)} \]
\[i : \text{ratio transmisi putaran motor} \]

Kemudian dapat dihitung daya motor yang dibutuhkan untuk menggerakkan rak sumber turun naik, sebagai berikut :

\[P = m \cdot V \quad (2) \]

Dimana :

\[P : \text{Daya motor (W)} \]
\[m : \text{massa (N)} \]

Selanjutnya karena ada rak sumber yang dipindah dari bawah ke atas atau sebaliknya menggunakan sling baja, hal tersebut menimbulkan tegangan pada sling baja, karena mendapatkan beban dari rak sumber yang mengganggu. Sling baja secara luas banyak digunakan didalam mesin angkat, karena sifatnya fleksibel dan seling baja dibuat oleh patok mempunyai standar tegangan bengkok sebesar = 130 sampai dengan 200 kg/mm².

Pemakaian sling baja harus mempertimbangkan banyaknya belokan (bending) yang terjadi saat sling berputar. Hal tersebut ditunjukan pada Tabel 1.

Tabel 1. Hubungan banyak lintasan bending dengan diameter drum

<table>
<thead>
<tr>
<th>Number of bends</th>
<th>Dmin/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>26.5</td>
</tr>
<tr>
<td>6</td>
<td>28</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>31</td>
</tr>
</tbody>
</table>

Banyaknya bending ditentukan dari ratio \(D_{\text{min}}/d \) (\(D_{\text{min}} \) adalah diameter minimum puley dan \(d \) adalah diameter sling) dan \(D_{\text{min}}/\delta \) (\(\delta \) adalah diameter kawat pada sling). Sedangkan besarnya diameter sling ditentukan dengan empat macam stender pilihan perhitungan, diantaranya adalah 6x19=114+1c, 16x37=222+1c, 6x61=366+1c dan 18x19=342+1c. Pengertian 6 adalah lintang pada sling sebanyak 6 lintang, 19 adalah banyaknya kawat dalam satu lintang 19 buah kawat dan 1c adalah satu core atau sumbu sling 1 buah. Untuk konstruksi sling baja ditunjukkan pada Gambar 2.

![Gambar 2. Konstruksi sling baja.](image)

Untuk diameter sling dapat dihitung dengan persamaan:

\[d = 1,56\sqrt{i} \quad (3) \]

Dimana :

\[d : \text{diameter sling (mm)} \]
\[i : \text{banyaknya kawat didalam sling} \]

Tegangan maksimum yang terjadi pada sling merupakan tergantung antara tegangan tarik dan bending dengan persamaan berikut:

\[\sigma_{E} = \frac{S}{F} + \frac{\delta E}{D_{\text{min}}} = \frac{\sigma_{b}}{K} \quad (4) \]

Dimana :

\[\sigma_{E} : \text{Tegangan gebungan (kg/mm}^{2} \]
\[S : \text{Tegangan pada sling (kg)} \]
\[F : \text{Luas penampang lintang sling (cm}^{2} \]
\[E : \text{Modulus elastis sling (E \approx 800.000 \text{gl/cm}^{2})} \]
\[\sigma_{b} : \text{Tegangan tarik putus bahan (kg/cm}^{2} \]
\[K : \text{Faktor keselamatan sling (K = 4)} \]

Sedangkan luas penampang lintang sling dapat dihitung dari sling dengan jumlah kawat 114, 222 dan 342, sedangkan untuk pemilihan ini karena beban hanya 100 kg yang digunakan adalah sling 114, dengan persamaan :
$$F_{(1)(x)} = \frac{S}{\sigma b \frac{d}{K} D_{\text{min}}} 50000 \quad (5)$$

Kemudian tegangan tarik putus sling yang diperbolehkan adalah

$$P_{(1)(x)} = \frac{S \sigma b}{\sigma b \frac{d}{K} D_{\text{min}}} 50000$$

Gambar 3. Hubungan motor, drum dan sling

Sedangkan untuk tali sling baja yang digunakan untuk mengangkat beban pada rak yang bekerja adalah beban dinamis. Delam perhitungan ini dicari harga kemampuan tali sling mengangkat rak. Agar tali sling aman digunakan dalam bekerja akibat beban dinamis, maka dalam perhitungan terhadap tegangan tarik beban, ditentukan dengan dua kali faktor keamanan, yaitu pertama faktor keamanan beban statis sebesar 2, kemudian faktor keamanan beban dinamis sebesar 2/3 dari tegangan tarik ijin dinamis, yaitu :

$$F = \bar{\sigma} A \quad (3)$$

Dimana :
$$F = \text{Besarnya beban yang dapat diangkat tali sling (kg)}$$
$$\bar{\sigma} = \text{Tegangan tarik ijin dinamis (kg/cm}^2)$$
$$A = \text{Luas penampang tali sling (mm}^2)$$

(Bahan kawat yang digunakan adalah kawat baja pegas tahan karat (SUS302 WPA) dengan diameter kawat 0,65 mm)

Sedangkan kopling tetap yang digunakan sebagai perantara antara drum dan reduction gear menggunakan kopling tetap flens luwes sebagaimana ditunjukkan dalam gambar dibawah ini :

Kopling tetap flens luwes ini dipergunakan untuk menghubungkan dua poros yang segaris sumbu dan dipasang pada ujung poros dengan diberi pasak serta diikat dengan baut pada flens dan pada kepala baut diberi karet atau kulit yang fungsinya agar kedua poros dapat bergerak secara eksentrisk dalam batas tertentu. Daya motor yang bekerja memutarkan poros menimbulkan momen putar sebesar :

$$T = 9,74 \times 10^5 \frac{P_d}{n} \quad (4)$$

Dimana :
$$T = \text{Momen rencana (kgmm)}$$
$$P_d = \text{daya rencana (kW)}$$
$$n = \text{putaran motor penggerak (rpm)}$$

Sedangkan pada puley pengarah sling yang ditinjau adalah sudut liit atau sudut kontak α, bias sudut kontak kecil, maka gaya gesekan sling terhadap puley juga
menjadi kecil. Sudut kontak pada puley bisa mencapai 135° sampai dengan lebih dari 180°, sebagaimana ditunjukan pada Gambar 5.

Gambar 5. Puley pengarah sling.

Puley pada pengarah sling sudut kontak yang terbentuk sebesar 90°, sehingga gesean yang terjadi antara sling dengan puley sangat kecil.

3. HASIL DAN PEMBAHASAN

dengan teralis, kecuali bila sling baja kendur, kemungkinan besar rak sumber akan berbenturan dengan teralis, sehingga rak sumber akan mengalami shutdown. Data pada perancangan ini diantaranya adalah:

<table>
<thead>
<tr>
<th>No</th>
<th>Istilah</th>
<th>Dimensi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Berat rak sumber</td>
<td>150 kg</td>
</tr>
<tr>
<td>2</td>
<td>Daya motor</td>
<td>2,50 kW</td>
</tr>
<tr>
<td>3</td>
<td>Putaran motor</td>
<td>1500 rpm</td>
</tr>
<tr>
<td>4</td>
<td>Gigi reduksi (i)</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>Carrier menyentuh teralis</td>
<td>Shutdown</td>
</tr>
<tr>
<td>6</td>
<td>Rak sumber menyentuh teralis</td>
<td>Shutdown</td>
</tr>
</tbody>
</table>

Sedangkan hasil perhitungan disajikan pada Tabel 2.

<table>
<thead>
<tr>
<th>No</th>
<th>Istilah</th>
<th>Dimensi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kecepatan motor</td>
<td>1,57 m/detik</td>
</tr>
<tr>
<td>2</td>
<td>Daya motor yang dibutuhkan</td>
<td>2,355 kW</td>
</tr>
<tr>
<td>3</td>
<td>σ standar sling</td>
<td>130 – 200 kg/mm²</td>
</tr>
<tr>
<td>4</td>
<td>Banyak bidang bending</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Tegangan gabungan yang terjadi</td>
<td>47,5 kg/mm²</td>
</tr>
<tr>
<td>6</td>
<td>Diameter sling</td>
<td>10,41 mm</td>
</tr>
<tr>
<td>7</td>
<td>Diameter kawat sling</td>
<td>0,65 mm</td>
</tr>
<tr>
<td>8</td>
<td>Tegangan putus warna yang terjadi</td>
<td>16,69 kg/mm²</td>
</tr>
<tr>
<td>9</td>
<td>Beban yang bekerja pada sling baja</td>
<td>171,37 kg</td>
</tr>
<tr>
<td>10</td>
<td>Momen putus warna yang terjadi pada motor</td>
<td>1529,18 kg/mm</td>
</tr>
<tr>
<td>11</td>
<td>Kemampuan sling menahan beban dinamis dan statis</td>
<td>2339,4 kg</td>
</tr>
</tbody>
</table>

Perhitungan ini diawali dengan menghitung kecepatan motor menggerakkan rak sumber, yaitu:

$$V = \frac{\pi D n}{i}$$

$$V = 1,57 \text{ m/detik}$$
Barikutnya dihitung besarnya daya motor yang dibutuhkan untuk menggerakkan rak sumber, yaitu

\[P = m \cdot V \]

\[P = 2,355 \text{ kW} \]

Tegangan gabungan antara tegangan tarik dan benda dihitung dengan persamaan:

\[\sigma_s = \frac{S}{F} + \frac{\delta E}{D \min} = \frac{\sigma b}{K} \]

\[\sigma_s = 47,5 \text{ kg/mm}^2 \]

Selanjutnya dapat dihitung luas penampang lintang kawat, yaitu:

\[F_{(111)} = \frac{S}{\sigma b} = \frac{d}{K \cdot D \min} = 50,000 \]

\[F_{(111)} = 10,146 \text{ mm}^2 \]

Untuk tegangan tarik putus yang terjadi dapat dihitung dengan persamaan:

\[P_{(111)} = \frac{\sigma_s}{S} \cdot \frac{d}{K \cdot D \min} = 50,000 \]

\[P_{(111)} = 16,89 \text{ kg/mm}^2 \]

Beban yang bekerja pada sling baja:

\[W = P \cdot F \]

\[W = 171,37 \text{ kg} \]

Momen puntir yang terjadi pada motor:

\[T = 9,74 \times 10^3 \frac{Pd}{n} \]

\[T = 1529,18 \text{ kgmm} \]

Kemampuan sling menahan beban dinamis dan statis:

\[F = \sigma_s A \]

\[F = 2339,4 \text{ kg} \]

4. KESIMPULAN

Ukuran-ukuran equipment sistem transmisi rak sumber radiasi yang dihasilkan, diantaranya daya motor yang dibutuhkan lebih kecil dari daya yang disiapkan, yaitu 2,355 kW dari 2,5 kW dan diameter sling yang dihasilkan 10,41 mm mempunyai kekuatan/kemampuan menahan dinamis/statis sebesar 2339,4 kg, sedangkan beban yang bekerja pada sling 171,37 kg, sehingga kekuatan sling 444

berlipat 13,65 kali dari beban yang bekerja. Hal ini tentunya dari segi keselamatan bahan akan lebih terjamin walau sling bekerja pada daerah baseh, disamping memang bahan sling yang digunakan pun terbuat dari kawat baja pegas tahan karat (SUS302 WPA).

5. DAFTAR PUSTAKA

