EFEK ANIL SUHU RENDAH PADA TERFENOL-D YANG DIBUAT DENGAN METODE REDUKSI-DIFUSI

M.I. Maya Febri, Mashadi
P3IB-BATAN, Kawasan PUSPIPTEK Serpong, 15314 Tangerang, Indonesia
E-mail: mfebri@cbn.net.id

ABSTRAK

Kata kunci: Anil, Terfenol-D, Reduksi, Difusi

ABSTRACT

THE EFFECT OF LOW-TEMPERATURE VACUUM ANNEALING ON TERFENOL-D MADE BY THE REDUCTION-DIFFUSION METHOD. This paper reports the effect of low-temperature vacuum annealing on Terfenol-D samples made by the Reduction-Diffusion (RD) method. It was expected that the hidrida phase previously present in the sample could be removed by the annealing. The annealing was done at 200°C, under dynamic vacuum for 8 hours. The pelletised samples were wrapped in Ta-foil then placed in a glass tube together with a pure Titanium getter. The XRD data analyses show several results: first, the FWHM values of peaks of annealed samples are smaller than those of samples before annealing. This might be due to internal stress relieving, since at that temperature, the diffusion is not favoured yet. Second, the hidrida phase could be removed by annealing. Third, for certain samples, it was observed a shift of position of the main phase’s peaks to a bigger 20 angle, meaning that the main phase initially contained a tiny amount of hydrogen, something which had not been detected yet. In conclusion, the low-temperature vacuum annealing has positive effect on Terfenol-D samples, and can be considered as an important modification of the RD technique.

Key words: Annealing, Terfenol-D, Reduction, Diffusion

PENDAHULUAN

Dalam pembuatan paduan magnetostrikif Terfenol-D dengan metode Reduksi-Difusi, dalam kondisi tertentu dapat diperoleh cuplikan yang, selain mengandung fasa utama yaitu Tb$_5$,Dy$_{20}$Fe$_{85}$ juga mengandung fasa sekunder berupa hidrida Tb$_5$,Dy$_{20}$Fe$_{85}$H$_{1.1}$ [11]. Fasa hidrida tersebut dicirikan dengan parameter kisi yang lebih besar (a~ 7,6 Å) daripada parameter kisi fasa utama (a~ 7,3 Å), sementara struktur kristalnya tetap sama, yaitu kubik berpusat muka $Fd3m$ tipe MgCu$_2$. Sehingga dalam karakterisasinya, fasa hidrida dapat dilihat dari adanya puncak-puncak diferaksi berindeks sama dengan fasa utama, namun posisinya berada pada sudut yang lebih kecil, sesuai dengan rumus Bragg:

$$2d_{hkl} \sin \theta_{hkl} = \lambda$$

Keberadaan fasa hidrida pada umumnya tidak

Dalam suatu struktur kristal kubus berpusat muka \(Fd\bar{3}m \), masih terdapat interstisi yang dapat dimuati atom-atom berukuran kecil seperti atom hidrogen. Fasa yang diperoleh kemudian disebut hidrida. Proses pembentukan hidrida adalah melalui mekanisme difusi, di mana koefisien difusi merupakan fungsi suhu. Pada suhu yang lebih tinggi, proses difusi semakin mudah (harga koefisien difusi lebih besar).

Di lain pihak, ada kemungkinan bahwa cuplikan yang dibuat dengan metode Reduki-Difusi (RD) mempunyai lapisan oksida/hidrosida pada permukaan serbuk. Ini dimungkinkan karena dalam tahap pembuatannya, ada proses pencucian serbuk dalam air. Molekul-molekul air dapat saja masih teradorsobi pada permukaan serbuk, di mana terdapat ion-ion tanah yang berfasitas tinggi. Yang terbentuk adalah hidrosida tanah jarang atau besi. Pada suhu kamari, lapisan ini dapat berfungsi sebagai pelindung bagian dalam partikel serbuk terhadap oksidasi lebih jauh. Lapisan ini dapat pula berfungsi sebagai penghambat terlepasnya atom-atom hidrogen dari cuplikan. Oleh karena itu, dalam usaha untuk mengeluarkan hidrogen, ikatan kimia hidrosida tersebut harus dihancurkan dahulu dengan memberikan energi termal yang cukup.

\[
R(OH)_3 \rightarrow R-O + H_2O
\]

(Hipotesis)

Dari pertimbangan-pertimbangan di atas, dapat diasumsikan bahwa pelepasan hidrogen dapat dilakukan dengan cara melakukan anil pada suhu yang memungkinkan difusi atom hidrogen mudah, sekligus terlepasnya ikatan hidrosida pada permukaan partikel serbuk. Data terdahulu pada jenis paduan lain menunjukkan bahwa suhu sekitar 200°C merupakan batas yang ideal [3]. Lebih-lebih lagi, suhu ini masih dalam batas stabilitas termal cuplikan [1], sebagaimana dapat dilihat dari data Differential Thermal Analysis (DTA) dalam acuan tersebut.

(Tujuan)

Tujuan dari kegiatan ini adalah membuktikan bahwa fasa hidrida dalam cuplikan Terfenol-D hasil sintesis dengan metode RD dapat dihilangkan dengan cara melakukan anil pada suhu yang tepat, yaitu sekitar 200°C, jauh lebih rendah daripada suhu sintesisnya.

TATA KERJA

Cuplikan berupa serbuk Terfenol-D, yang telah dibuat dengan metode Reduksi-Difusi (RD) sesuai dengan prosedur yang diuraikan dalam acuan [4]. Empat jenis cuplikan, yaitu RD11, RD12, RD15 dan RD17 telah dianil. Masing-masing cuplikan dispres lebih dahulu dalam cetakan berdiameter 6 mm, dengan kekuaatan 1 ton gaya. Setelah itu, pelet dibungkus secara terpisah dalam lembaran Tantalum, dimasukkan ke dalam tabung Pyrex bersama dengan sepotong Titanium yang akan berfungsi sebagai ‘getter’ untuk menangkap molekul-molekul gas yang tidak sempat terhisap keluar oleh pompa vakum. Salah satu ujung tabung tertutup, dan ujung tabung yang lainnya dihubungkan dengan pompa vakum. Ruangan dalam tabung lalu dipompa selama 30 menit, sebelum pemanasan dimulai. Vakum mencapai \(10^{-2} \) – \(10^{-3} \) Torr. Setelah itu, cuplikan dipanaskan pada suhu 200°C selama 8 jam sambil dipompa terus-menerus (vakum dinamik). Tujuan pemompaan ini adalah agar gas-gas yang terlepas dari cuplikan tidak menempel/ masuk lagi ke dalam sampel ketika sampel didinginkan. Setelah anil selesai, cuplikan didinginkan, kemudian pelet dihancurkan dan serbuknya dianalis dengan teknik difraksi sinar X (XRD) menggunakan difraktometer SHIMADZU XD610 di P3IB-BATAN dengan rentang pengukuran 20 - 80°. Target yang digunakan adalah Cu dengan \(\lambda_K \alpha = 1,54103\AA \).

HASIL DAN PEMBAHASAN

Gambar-gambar 1 (a) s.d. (h) menampilkan data intensitas difraksi sinar X pada cuplikan-cuplikan RD11, RD12, RD15 dan RD17 sebelum dan sesudah anil. Beberapa pembahasan dapat diberikan berdasarkan data tersebut:

Pertama, cuplikan RD15, yang sebelum dilakukan anil, kualitas kristalisasinya rendah, setelah anil tingkat kristalisasinya tetap rendah. Anil pada suhu 200°C tidak dapat memperbaiki tingkat kristalisasi sampel tersebut.

11
Gambar 1. a-h: Pola difraksi cuplikan RD11, 12, 15 dan 17 sebelum dan sesudah anil
Tabel 1. Hasil analisis data intensitas difraksi Sinar-X fasa utama Terfenol-D, dengan ‘fitting’ Gaussian. Tanda (+) dan (-) menunjukkan kenaikan atau penurunan harga 20 dan FWHM

<table>
<thead>
<tr>
<th>CUPLIERAN</th>
<th>ktl</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEBELUM ANIL</td>
<td>SESUDAH ANIL</td>
</tr>
<tr>
<td></td>
<td>posisi 20</td>
</tr>
<tr>
<td>RD11</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>311</td>
</tr>
<tr>
<td></td>
<td>422</td>
</tr>
<tr>
<td>RD12</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>311</td>
</tr>
<tr>
<td></td>
<td>222</td>
</tr>
<tr>
<td></td>
<td>422</td>
</tr>
<tr>
<td>RD17</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>311</td>
</tr>
<tr>
<td></td>
<td>511</td>
</tr>
</tbody>
</table>

Catatan: data cuplikan RD15 tidak dapat di’fit’ karena statistik pengambilan datanya kurang mendukung.

Ketiga, pada cuplikan RD11 dan RD12 terlihat jelas bahwa puncak-puncak fasa hidrida, yang ditandai dengan indeks Miller dalam kurung, tidak lagi tampak setelah cuplikan-cuplikan tersebut dianil. Hal ini menandakan dengan jelas bahwa dalam batas kemampuan teknik difraksi sinar X, fasa hidrida dapat dihilangkan melalui proses anil tersebut. Jadi, cuplikan-cuplikan yang terkontaminasi fasa hidrida dapat dibersihkan lagi berkat perlakuan anil tersebut.

Tabel 1 juga menunjukkan bahwa sebagian besar puncak mengalami penempitan (penurunan FWHM) setelah anil, yang dapat diakibatkan oleh beberapa hal: pertama, pelepasan tegangan internal (internal stress release) selama anil. Kedua, fasa utama mungkin pada awalnya tidak seratus persen bebas dari hidrida. Maksudnya, ada beberapa bagian yang terhidrogenasi secara tidak homogen, dengan kadar H yang sangat sedikit dan distribusinya lebar, sehingga tidak sampai timbul puncak difraksi baru, namun hanya terjadi pelebaran puncak difraksi terhadap apabila sampel pada awalnya 100% bebas hidrogen. Selama anil, hidrogen tersebut lepas, dan setelah anil, yang terlihat adalah fasa utama yang jauh lebih ‘bersih’ hidrogen. Pada cuplikan RD17, sangat mungkin ini yang terjadi karena terlihat pergseraan posisi puncak ke sudut yang lebih besar. Hasil ini mempunyai arti penting, karena ini menunjukkan bahwa sampel yang biasanya dianggap bebas hidrogen, kemungkinan ia tidak bebas sama sekali, artinya kemungkinan ada hidrogen dalam jumlah infinitesimal yang terdapat di dalam sampel, yang selama ini tidak terdeteksi.

Pada cuplikan-cuplikan RD11 dan RD12, posisi puncak-puncak difraksi fasa utama bergerser ke arah sudut 20 yang lebih kecil, dengan disertai juga oleh penurunan FWHM. Orde pergseresan itu sama dengan untuk RD17, yaitu 0,1–0,2 derajat. RD11 dan RD12 sebelum anil mengandung fasa hidrida RFe₂H₆, di mana atom-atom hidrogen (dalam jumlah relatif besar) kemudian lepas karena sampel dianil sambil dipompa. Diduga bahwa masih ada sejumlah infinitesimal atom hidrogen yang terikat dalam partikel, sangat mungkin dalam batas butir/cacat kristal.
KESIMPULAN

Perlakuan anil suhu rendah dalam kondisi vakum dinamis yang disertai 'getter', yang diberikan pada cuplikan-cuplikan RD mengakibatkan efek yang berbeda pada tiap sampel. Namun pada dasarnya, anil tersebut membantu pelepasan tegangan dalam cuplikan dan pelepasan hidrogen, molekul air, dan molekul-molekul lain yang mungkin teradsorpsi pada permukaan cuplikan (nitrogen, carbon,). Anil tersebut juga menyebabkan hilangnya fasa-fasa tak dikenal, yang besar kemungkinannya terdiri dari oksida/hidroksida. Jadi anil tersebut berdampak positif pada sampel karena bersifat 'membersihkan'. Langkah perlakuan anil tersebut merupakan suatu modifikasi yang penting dari metode sintesis Reduksi-Difusi.

DAFTAR ACUAN

