PLANTS COVERING INFLUENCE TO THE RADIOISOTOPES EXISTENCE OF ¹³⁷Cs AND ²¹⁰Pb_{EX} IN THE SOIL

Nita Suhartini^{1*}, Barokah Aliyanta¹, and Arief Adhari¹

1) Application Center for Isotopes and Radiation-National Nuclear Energy Agency (PAIR-BATAN)

*Corresponding author: suhartini60@gmail.com

ABSTRAK

PENGARUH TUMBUHAN PELINDUNG TERHADAP KEBERADAAN ISOTOP ¹³⁷Cs dan ²¹⁰Pbex DI TANAH. Radioisotop alam ¹³⁷Cs dan ²¹⁰Pbex yang terdapat di tanah dapat digunakan sebagai perunut untuk mengestimasi besarnya laju erosi/deposit di suatu lahan, dengan membandingkan nilai inventori ¹³⁷Cs atau ²¹⁰Pb_{ex} di suatu lokasi penelitian dengan nilai inventori suatu lokasi acuan. Radioisotop alam tersebut melekat sangat kuat pada permukaan tanah (lempung) sehingga dapat digunakan sebagai perunut pada proses pergerakkan tanah. Keberadaan radioisotop alam ¹³⁷Cs dan ²¹⁰Pb_{ex} pada suatu lahan sangat dipengaruhi oleh tumbuhan penutup, karena tanpa tumbuhan penutup radioisotop alam akan mudah hilang karena terbawa oleh aliran air hujan yang langsung jatuh pada permukaan tanah. Penelitian ini bertujuan untuk melihat pengaruh dari tanaman pelindung terhadap keberadaan radioisotop alam ¹³⁷Cs dan ²¹⁰Pb_{ex} di tanah. Pengambilan sampel dilakukan pada dua lahan tak diolah pada saat masih ditanami tanaman keras (2016) dan pada saat telah terbuka (2018), menggunakan alat coring (di 10 cm) untuk kedalaman 2 cm dan alat coring (di 7 cm) untuk kedalaman 20 cm. Hasil penelitian menunjukan bahwa aktivitas radioisotop alam ¹³⁷Cs dan ²¹⁰Pbex pada permukaan tanah berkurang sangat signifikan, sedangkan nilai inventori total pada kedalaman 20 cm berkurang cukup signifikan untuk lahan yang telah terbuka. Besarnya laju erosi di lahan terbuka jauh lebih tinggi dibandingkan ketika lahan masih tertutup, yaitu untuk metode ¹³⁷Cs adalah 44,1 t/ha.thn (CBG), -4,3 t/ha.thn (BMC) dan 4 t/ha.thn (CBG) -27,1 t/ha.thn (BMC), masing-masing untuk lahan tertutup dan terbuka, sedangkan untuk metode ²¹⁰Pbex adalah -8 t/ha.thn (CBG), -36.9 t/ha.thn (BMC), dan -58 t/ha.thn (CBG), -79,9 t/ha.thn (BMC), masing-masing untuk lahan tertutup dan lahan terbuka.

Kata kunci: Cesium-137, DAS Ciujung, erosi, radioisotop alam, Timbal-210

ABSTRACT

PLANTS COVERING INFLUENCE TO THE RADIOISOTOPES EXISTENCE OF ¹³⁷Cs and ²¹⁰Pbex IN THE SOIL. Cs-137 and Pbex-210 of environmental radioisotope content in the soil can be useful to estimate the rate of erosion/deposition in an area, by comparing the inventory value of ^{137}Cs or $^{210}Pb_{ex}$ in observed site with those in a stable reference site. ¹³⁷Cs and ²¹⁰Pb_{ex} stick very strongly at the surface of the soil (clay), so it can use as a tracer for the movement of soil. Plants very influence the existence of ¹³⁷ Cs and 210 Pb_{ex} environmental radioisotopes as a cover. If without a plant cover, then this environmental radioisotope at the soil would be gone by rain off. This experiment aims to observe the effect of plant cover on the existence of ${}^{137}Cs$ and ${}^{210}Pb_{ex}$ at the soil in uncultivated land. Sampling had been done in two uncultivated lands when the land still covering by plants (2016) and after becoming vacant land (2018), using coring (10 cm) for the surface layer and coring (7 cm) for the depth of 20 cm. The result showed that the activity of ^{137}Cs and $^{210}Pb_{ex}$ environmental radioisotopes at the surface layer decreased very significantly, and total inventory values until the depth of 20 cm decreased quite significantly at a vacant land condition. The corrosion rate for the vacant land is higher than the planted land. The value of erosion rate using the ¹³⁷Cs method is 44.1 t/ha.y (CBG); -4.3t/ha.y (BMC) and 4 t/ha.y (CBG); -27.1 t/ha.y (BMC) for planted land and vacant land, respectively. Meanwhile, using the ²¹⁰ Pb ex method is -8 t/ha.y (CBG); -36.9 t/ha.y (BMC) for planted land and -58 t/ha.yrs (CBG), -79.9 t/ha.yrs (BMC) for vacant land.

Keywords: ¹³⁷Cs, Ciujung Watersheds, erosion, environmental radioisotope, ²¹⁰Pb

INTRODUCTION

Cover plants that grow on lands such as perennials (rambutan, durian, acacia, mahogany, teak, rubber), grass, and weeds can prevent and reduce the loss of soil particles. The scouring of rainwater that flows on the surface of the ground can cause damage to soil particles or often refer to as erosion. Erosion is a big problem in Indonesia because it can cause reduced soil fertility, river silting, and flooding. This decay occurs as a result of open forest clearing so that the reservoir area that can control the balance of nature has lost its function. The amount of erosion can be determined conventionally by looking at all field conditions and carrying soil samples to analyze some nutrients and organics (N, P, C organic). However, this method requires a long observation time, namely in the rainy season and the dry season (minimum one year). Due to limitations in conventional methods of documenting erosion distribution, the use of natural radioisotopes as an alternative approach to research soil erosion and sediment origins has begun to develop. The natural radioisotopes of ¹³⁷Cs and ²¹⁰Pb are tools to obtain information about the distribution of erosion/deposition that has occurred in the past for 40 years and 100 years [1].

The cover plants greatly influence the existence of ¹³⁷Cs and ²¹⁰Pb isotopes in the soil because the radioisotope is attached to the surface of soil particles. For ¹³⁷Cs isotopes whose formation only occurred around the 1950s - 1960s, so that in vacant fields, the content may be very small or absent, because it has been carried away by the flow of rainwater. In Indonesia, many researchers have used natural radioisotopes in the soil. These studies include the determination of natural radioisotope profiles in stable soils [2] and the determination of erosion rates in processed and unprocessed land [3]. Besides, it also includes research on the origin of sediments [4] and studies of sedimentation rates in rivers [5]. Based on the results of these studies, future research can still utilize radioisotope ¹³⁷Cs. However, because its concentration is minimal, it takes a long time to analyze.

Cs-137 is a natural radioisotope with a half-life ($t\frac{1}{2}$) of 30.2 years. The presence of ¹³⁷Cs radioisotopes in nature is a fallout from the atmosphere as a result of nuclear weapons

testing. ¹³⁷Cs globally have been detected in nature since 1954, and the highest flux in the northern hemisphere occurred in 1973 due to the massive nuclear weapons experiment that took place at the time. After the nuclear weapons test agreement in 1963, it caused the fall of ¹³⁷Cs from the atmosphere to decrease significantly. Since the 1970s, the fall of 137Cs from the atmosphere has become very insignificant, even almost non-existent. Aside from nuclear weapons testing, for several regions in Europe and regions adjacent to Russia, the addition of the fall of ¹³⁷Cs originated from the Chernobyl accident in 1986 [6]. The fall of ¹³⁷Cs, when it touches the surface of the earth, will be adsorbed quickly and firmly on the ground surface and then distributed vertically and laterally together with the movement of soil particles. The strong binding of ¹³⁷Cs to soil particles makes ¹³⁷Cs function as a tracer in the movement of soil and sediment [7].

Pb-210 is a natural radioisotope (half-life of 22.2 years), which is the result of a series of decay from the parent radioactive 238 U. A series of short-life radioactive decay can produce 210 Pb, namely from 222 Rn gas decay (half-life of 3.8 days), which is a decay of 226 Ba natural radioactive (half-life 1622 years) [8]. The 210 Pb found in soil and rocks is the natural decay product of 226 Ra. 222 Ra will decay into 222 Rn by short-lived (t¹/₂ = 3.8 days), which is a small portion of this 222 Rn gas will diffuse upward and release into the atmosphere. 222 Rn gas trapped in the ground and rocks will decay to 210 Pb, which is in equilibrium with its parent; this is known as 210 Pb supported.

Meanwhile, ²²²Rn gas released into the atmosphere will decay to ²¹⁰Pb and then fall to the ground through rainwater. This ²¹⁰Pb fall at ground level is not in equilibrium with its parent, and this ²¹⁰Pb drop is known as ²¹⁰Pb unsupported or excess (Pb_{ex}). Because of the strong absorption capacity of soil particles and sediments, the ²¹⁰Pb fall when touching the ground surface will quickly be adsorbed and adhere very firmly to soil particles and sediments. ²¹⁰Pb movements in the soil and sediments vertically and horizontally are caused due to the erosion, transportation, and Because deposit processes. of this phenomenon, the function of ²¹⁰Pb unsupported or excess is like ¹³⁷Cs as a tracer for soil erosion and sediment origin research. The process of the presence of radioscopy ¹³⁷Cs and ²¹⁰Pb_{excess} in the soil can be seen in Fig. 1 [9].

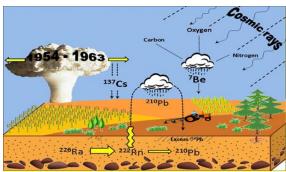


Figure. 1. The process of the existence of radioisotopes ¹³⁷Cs and ²¹⁰Pb_{excess} in the soil

The use of radioisotopes ¹³⁷Cs and ²¹⁰Pb_{excess} to determine the rate of erosion of land, in addition to the inventory value of the land, it is necessary to find the inventory value reference where from a site the erosion/deposition process is tiny or does not occur. The reference site is a location that does not experience damage or tillage so that the reduction of the ¹³⁷Cs radioisotopes at that location is only due to the decay process. The location of this site is ideally on the top of a hill, flat, and vacant land. The inventory value of this location will be a comparison of the erosion rate calculation. If the inventory value of the research location is smaller than the inventory value of the reference location, it indicates that an erosion process has occurred (-). If the inventory value of the research location is higher than the reference location, then it indicates that a deposition process (+) has occurred [10].

This study will determine the influence of cover plants on the presence of radioisotopes in the environment, which are ¹³⁷Cs and ²¹⁰Pb excess or unsupported. The research location chosen was the subwatersheds of Ciujung Hulu-Lebak-Banten, which is part of the Ciujung Watersheds. The purpose of this text is to present the presence of ¹³⁷Cs and ²¹⁰Pb_{excess} from two uncultivated lands when it was still planted and after it became vacant land, also its effect on the rate of erosion. The results of this study came from the ground surface and a depth of 20 cm.

METHOD

This study aims to see how much loss of ¹³⁷Cs and ²¹⁰Pb _{excess} radioisotopes in the land when perennials still planted it and after it became vacant land. The method used is the analysis of the ¹³⁷Cs and ²¹⁰Pb_{excess} radioisotope content found in the soil. Soil sampling is carried out on the surface using a coring tool (d = 10 cm) to a depth of 2 cm and coring tool (d = 7 cm) to a depth of 20 cm, then pretreatment of the soil sample before being analyzed using a gamma spectrometer. The location of this study is a land located in the sub-watershed of Ciujung Upstream.

Research sites

Sampling carried out in two locations (Fig. 2), CBG and BMC, located in the Ciboleger village, Cimarga sub-district. The sampling process was carried out when it was still planted (2016) and after it became vacant land (2018).

Sampling

Sampling was carried out using several tools. Scrapper (20 x 50) cm for radioisotope distribution profiles of ¹³⁷Cs and ²¹⁰Pb_{ex} at the reference location, coring (d = 10 cm) for surface samples, and coring (d= 7 cm) for determining inventory values of radioisotope ¹³⁷Cs and ²¹⁰Pb_{ex}. Then, the soil sample is put in a plastic clip and labelled (code and date).

Pre-treatment of the sample

Soil samples are taken to the sedimentology laboratory of PAIR - BATAN, then preliminary treatment before the content of ¹³⁷Cs and ²¹⁰Pb are analyzed. The pre-treatment samples consisted of: drying the soil sample, weighing the total dry weight of the sample, filtering to pass through a 1 mm sieve, and grinding for samples that do not pass through a 1 mm sieve.

Analysis of ¹³⁷Cs and ²¹⁰Pb content

A total of 400 g of dry and delicate soil samples were put into marinelli, tightly closed, then sealed using masking tape for 21 days. This treatment was carried out to ensure that an equilibrium between ²²⁶Ra and its deceased ²²²Rn had occurred. Then, the content of ¹³⁷Cs

and ²¹⁰Pb in soil samples analyzed using a High Purity Germanium (HPGe) detector with 30% efficiency connected to the GENIE 2000 spectrum master and Multi-Channel Analyzer (MCA). The energy range of this gamma spectrometer is 1.54 keV (in channel 1) to 1777.05 keV (in channel 4095). Soil samples after undergoing pretreatment will be analyzed using a gamma spectrometer, which has a minimum detection (MDC) for ²¹⁰Pb total = 7.7 Bq/kg, ²¹⁰Pb supported = 5 Bq/kg, and ¹³⁷Cs = 0 Bq/kg. The analysis is carried out for a minimum of 80,000 seconds using secondary standards; it is soil taken from the Nganjuk area, which has known activity of ¹³⁷Cs, a total of ²¹⁰Pb, and ²¹⁰Pb supported. Secondary standard soil is also included in marinelli as much as 400 g and sealed using masking tape for a minimum of 21 days. Environmental isotope activity of ¹³⁷Cs is obtained at 661 keV energy, while a total ²¹⁰Pb activity is determined at 46.5 keV energy, and ²¹⁴Pb or ²¹⁰Pb supported radioactivity is determined at 351.9 keV energy. Radioactivity of ²¹⁰Pb unsupported or excess is obtained by reducing the ²¹⁰Pb supported radioactivity to a total ²¹⁰Pb [11]. After counting, the soil sample is returned to plastic or remains in sealed marinelli; it can be re-analyzed if needed.



Figure. 2. Ciujung watershed map and location of sampling points

Conversion of count to radioisotope radioactivity

Determination of the detector correction factor using soil standard (secondary standard)

with the known activity of 137 Cs, 210 Pb and 210 Pb supported (137 Cs = 1.20 Bq/kg, 210 Pb total about 27.09 Bq/kg, and 210 Pb supported about 12.13 Bq/kg in December 2006). Correction of activities from 137 Cs dan 210 Pb total dan 210 Pb

supported for the secondary standard to current activities using Eq. (1) with A_o is the activity of ¹³⁷Cs, ²¹⁰Pb in total or ²¹⁰Pb supported in standard samples on December 2006 (Bq/kg), *A* is activity of ¹³⁷Cs, ²¹⁰Pb in total or ²¹⁰Pb supported currently (Bq/kg), k is constant, and *t* is decay duration (years) [2].

$$A = A_o. e^{-kt}$$
(1)

The measurement results of isotopes of 137 Cs, 210 Pb in total, and 210 Pb supported in a standard sample using MCA then compared to the actual 137 Cs, 210 Pb, and 210 Pb supported activities at the same time. This measurement uses Eq. (2) with *c.f.* is the correction factor for 137 Cs, 210 Pb in total or 210 Pb supported, and *w* is the weight of standard sample analyzed (kg) [2].

The correction factor is used to correct the activity of 137 Cs, 210 Pb total activity, and 210 Pb supported of soil samples obtained through measurements using an MCA tool (assuming that the marinelli geometry conditions and sample weight are the same as the standard sample). This calculation uses Eq. (3) *As* is the activity of 137 Cs, 210 Pb in total or 210 Pb supported in the corrected sample (Bq/kg)[2].

$$As = c.f * ((Sample - BG)/(w*t))$$
 (3)

Rate of erosion/deposition

Calculation of erosion/deposition rates for each trial point uses the Mass Balance Model 1, which is contained in the conversion model software developed at the University of EXETER-United Kingdom. This model is presented in Eq. (4) with Y is annual erosion rate (t/ha/year), d is the depth of tillage (m), B is bulk density (kg/m³), X is the percentage loss of total environmental isotope inventory, and t is the year of sampling [12].

$$Y = 10 \text{ d } B (1 - (1 - X / 100)^{1 / (t-1963)})$$
(4)

RESULTS AND DISCUSSION

Reference location

The selected reference location is an unprocessed land located at position (S = 06 $^{\circ}$ 35 '02.6 ", T = 106 ° 13' 19.0") in Ciboleger Village - Leuwidamar sub-district. A sampling at the reference location is done at 1 point using a scrapper tool for the vertical distribution profile and 6 points using a coring tool for inventory values. Inventory value from this reference location will be used as a comparison whether erosion or deposition has occurred, and also used in the calculation of erosion/deposition rates. By using Eq. (1) to Eq. (3), activities and inventory of radioisotopes found in the ground will be obtained. Table 1 shows the results of the calculation of activities and inventory for ¹³⁷Cs radioisotopes from each layer.

Table. 1. Activity (Bq/kg) and Inventory (Bq/m²) of ¹³⁷Cs in the Reference location of Ciboleger Village - Leuwidamar sub-district - Lebak

Distribution profile		Inventory		
Depth (cm)	Bq/kg	Code	Bq./m²	
(0 – 2)	1.44	Scrapper	229	
		(0-20) cm		
(2 – 4)	1.54	COR 1	290	
(4 – 6)	1.47	COR 2	183	
(6 – 8)	1.46	COR 3	186	
(8 – 10)	1.85	COR 4	206	
(10 – 12)	1.83	COR 5	192	
(12 – 14)	1.82	COR 6	209	
(14 – 16)	1.99			
(16 - 18)	0.78			
(18 – 20)	1.16	Average	213 ± 35	
(20 – 30)	0.00			

The vertical distribution profile from the radioisotope 137Cs in the soil layer at the reference location is shown in Fig. 3. Data in Fig. 3 shows the profile of the ¹³⁷Cs radioisotope's distribution does not match the theoretical vertical distribution process, in which the maximum is on the surface and decreases exponentially with increasing depth [10].

This reference location is an untreated land that is planted with perennials less than 50 years old and covered with grass and weeds. It is estimated that this land was once used as a processed field before it was converted to untreated land.

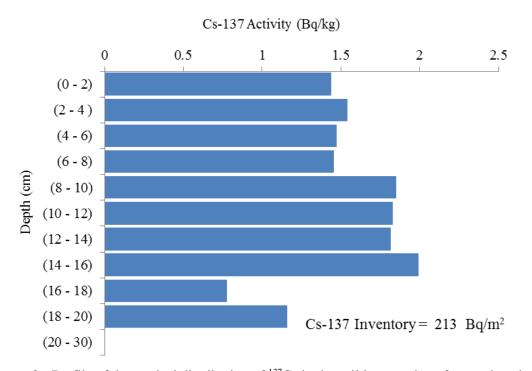


Figure. 3. Profile of the vertical distribution of ¹³⁷Cs in the soil layer at the reference location

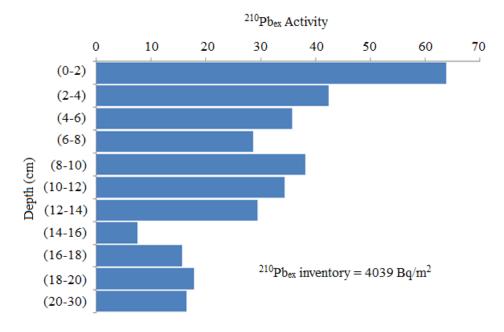


Figure. 4. Profile of the vertical distribution of ²¹⁰Pb_{ex} natural radioisotopes in the soil layer at the reference location

For radioisotopes ²¹⁰ Pb _{excess}, the value of the activity and inventory can be obtained using the same method. Table 2 shows the results of the calculation of activities and inventory of each soil layer.

The data in Table 2 were analyzed and obtained the profile of the vertical distribution of $^{210}Pb_{ex}$ natural radioisotopes in the soil layer, as shown in Fig. 4. Theoretically, the profile of

the distribution of natural radioisotopes in the soil is the maximum concentration found in the upper layer and decreases with increasing depth. In Figure 4, it appears that the maximum concentration found in the upper layer then decreases. At a depth (8-10) cm, the distribution pattern increases then decreases again. The profile of the $^{210}Pb_{ex}$ natural radioisotope vertical distribution is expected to

be the same as the theoretical distribution profile, which is the maximum in the surface layer and decreases exponentially with increasing depth. It is because the fallout from this radioisotope continues to this day.

Table. 2. Activity (Bq/kg) and Inventory
(Bq/m^2) of ²¹⁰ Pb in the Reference location
of Ciboleger Village - Leuwidamar
sub-district - Lebak

Distribution profile		Inventory		
Depth (cm)	Bq/kg	Code	Bq./m²	
(0 – 2)	63.86	Scrapper	4123	
		(0-20)cm		
(2 – 4)	42.36	COR 1	3644	
(4 – 6)	35.69	COR 2	6768	
(6 – 8)	28.61	COR 3	2518	
(8 – 10)	38.13	COR 4	4489	
(10 – 12)	34.31	COR 5	1870	
(12 – 14)	29.38	COR 6	4866	
(14 – 16)	7.46			
(16 - 18)	15.70			
(18 – 20)	17.88	Average	4039 ± 1489	
(20 – 30)	16.41			

Research sites

The research site is located in the village of Ciboleger. The sampling process was carried out when the land was still planted (2016) and after it became vacant land (2018). The research location is in the position (S = 06° 35 '08 "; T = 106 ° 12' 32") for the planted land with several perennials such as durian, jackfruit, rambutan, and acacia (CBG) and (S =06 ° 34 '33.8 "; T = 106 ° 11' 48.1") for teak gardens (BMC). Surface samples are taken at random points (minimum 10 points) with a depth of sampling of 2 cm and then mixed until homogeneous, stored in the plastic clip, and coded. The activities of these surface samples are calculated using Eq. (1) to Eq. (3) Moreover, the results are shown in Table 3.

Data in Table 3 shows natural radioisotopes at the ground surface are significantly reduced. This condition is caused by rainwater falling on the surface of the soil will directly carry natural radioisotope particles that have been attached to the soil grains. The radioisotope activity of ¹³⁷Cs at this location becomes minimal because it has been lost carried away by rainwater that flows directly above the surface of the ground and the effect of the decay process. ²¹⁰Pb_{ex} natural radioisotopes can increase over time because

they come from rocks and will continue to exist.

Table. 3. The activity of natural radioisotopes of ²¹⁰Pb excess and ¹³⁷Cs on the soil surface when the conditions are planted

and vacant land				
CODE	Activity of ¹³⁷ Cs		The activity of	
	(Bq/kg)		²¹⁰ Pb _{excess} (Bq/kg)	
	Planted	Vacant	Planted	Vacant
	Land	Land	Land	Land
CBG	1.59	0.86	23.58	7.05
BMC	1.26	0.72	32.01	15.11

The natural radioisotope inventory value of ¹³⁷Cs and ²¹⁰Pb is used to estimate the rate of erosion that occurs in this land, both in planted and vacant land conditions. In 2016, sampling was conducted at two study sites (CBG and BMC), each with 3 points. Meanwhile, when the condition of the location was vacant land in 2018, sampling was conducted at 2 points for the CBG location and 5 points for the BMC location. Table 4 presents the results of calculating the activity and inventory values from the experiment points.

Table. 4. Value of activities and inventory at the research site when conditions are planted and vacant land

со	Activity and CO ¹³			ory of	of Activity and Inventory of ²¹⁰ Pb _{ex}			
DE	Plar	nted	Vad	cant	Plar	nted	Vad	ant
	La	nd	Land				Land	
	(Bq/ kg)	(Bq/ m²)	(Bq/ kg)	(Bq/ m²)	(Bq/ kg)	(Bq/ m²)	(Bq/ kg)	(Bq/ m²)
CB	1.8	314	1.2	238	30.	528	4.5	854
G	4	216	7	272	93	5	7	507
	1.3	256	1.4		32.	531	26.	2
	0		3		35	3	56	
	1.5				25.	423		
	3				31	3		
В	1.3	224	0.6	120	26.	280	18.	322
Μ	0	163	6	90	76	4	91	9
С	1.2	197	0.8	66	38.	237	23.	395
	9		1	90	84	8	23	5
	1.3		0.7	91	50.	762	12.	217
	4		9		35	3	75	7
			0.6				11.	209
			3				49	6
			0.5				12.	219
			4				52	3

Data in Table 4 shows the concentration of 137 Cs to a depth of 20 cm was also significantly reduced in both study sites, as well as for natural radioisotopes 210 Pb_{ex}. The reduction in natural radioisotopes at a depth of 20 cm is not as significant as on the surface layer. It has occurred because the land has not been cleared for a long time and the vacant

land has not been processed. The rate of erosion that has occurred at both locations can be calculated using the inventory value in Table 4 and the inventory value of the reference location. The analysis was carried out using Eq. (4) contained in software created by the Department of Geography-Exeter University-UK. The results of the erosion/deposition calculation shown in Table 5.

Table. 5. The results of the calculation of the rate of erosion/deposition when the condition conditions are planted and vacant land

	vacalit fallu				
KODE	Rate erosion/d (t/ha	eposition	Rate of erosion/deposition (t/ha.y)		
	¹³⁷ Cs Method		²¹⁰ Pb _{ex} Method		
-	Planted Land	Vacant Land	Planted Land	Vacant Land	
CBG	44.1	4.0	-8.0	-58.0	
BMC	-4.3	-27.1	-36.9	-79.9	

The results in Table 5 show erosion in vacant land increased by more than doubled because many of the surface layers were lost due to rainwater, which fell directly to the ground surface. By the results of calculations in Tables 3 through 5, it can be seen that perennials such as rambutan, durian, banana, jengkol, acacia, or teak can hold the surface layer of the ground from the scour of rainwater. This ability is supported by the roots of these plants, which can suck rainwater into the ground.

CONCLUSION

This study provides the conclusion that without cover plants (perennials), the surface layer of the soil will experience the highest erosion due to rainwater scour. Without cover plants, the presence of natural radioisotopes of ¹³⁷Cs will disappear more quickly, making it difficult to exploit for the future. Meanwhile, because of ²¹⁰Pb_{ex} comes from ²³⁸U found in rocks, so the natural radioisotopes of Pb can still exploit. Perennials can prevent and reduce erosion because the roots of perennials can absorb rainwater on the soil surface into the soil.

ACKNOWLEDGEMENTS

This research has been financially supported by LPNK-BATAN. The author would like to thank the Head of the Isotope and Radiation Application Center, Head of Industry and Environment, as well as colleagues in the Erosion/Sedimentation Sub-Group for supporting and assisting this research.

REFERENCES

- P. Schuller, D.E. Walling, A. Iroumé, C. Quilodrán, A. Castillo, and A. Navas, "Using ¹³⁷Cs and ²¹⁰Pb_{ex} and other sediment source Fingerprints To document suspended sediment sources in small forested catchments in south–central Chile," *Jounal of Environmental Radioactivity*, vol. 124, pp. 147-159, 2013
- N. Suhartini and B. Aliyanta, "Distribusi Vertikal Radioisotop Alam ²¹⁰Pb di Tanah pada Beberapa Lokasi Stabil DAS Cisadane," in *Prosiding Seminar Nasional Teknologi Pengelolaan Limbah XV*, pp. 73-81, 2017
- N. Suhartini and B. Aliyanta, "Penggunaan Isotop ¹³⁷Cs dan ²¹⁰Pb_{ex} yang ada di Lingkungan untuk Estimasi Laju erosi/Depsosisi di Sub-DAs Ciberang-Serang-Banten," in *Prosiding Seminar Keselamatan Nuklir*, pp. 27-33, 2018
- N. Suhartini and B. Aliyanta, "Penggunaan Isotop ¹³⁷Cs dan ²¹⁰Pb_{ex} yang ada di Lingkungan untuk memperkirakan Asal Usul Sedimen di SubDAs Ciberang-Serang-Banten," in *Prosiding Seminar Keselamatan Nuklir*, pp. 261-268, 2018
- N. Suhartini and B. Aliyanta, "Estimasi Laju Sedimentasi Menggunakan Isotop Alam ²¹⁰Pb_{excess} di S. Cisemeut-Lebak-Banten," in *Prosiding Seminar Nasional APISORA*, pp. 114-119, 2018
- Y. Zhang, Y. Long, J. An, X. Yu, and X. Wang, "Spatial patterns of ¹³⁷Cs inventories and soil erosion from earthbanked terraces in the Yimeng Mountains China," *Journal of Environmental Radioactivity*, vol. 136, pp.1-9, 2014
- 7. D. E. Walling, "Recent advance in the use of environmental radionuclides in Soil Erosion Investigation," in Nuclear Techniques in Integrated Plant Nutrient,

Water and Soil Mangement. (Proc.Vienna Symp., Oct. 2000), pp. 279-301, 2002

- 8. D. E. Walling, A. L. Collins, and H. M. Sichingabula, "Using unsupported ²¹⁰Pb measurements to investigate soil erosion and sediment delivery in a small Zambia catchment," *Geomorphology*, vol. 52, pp. 193-213, 2003
- H. Y. Fang, M. L. Sheng, Z. H. Tang, and Q. G. Cai, "Assessment of soil redistribution and spatial pattern for a small mall catchment in the black soil region, Northeastern China: Using fallout ²¹⁰Pb_{ex}," *Soil and Tillage Research*, vol. 133, pp. 85-92, 2013
- P. Porto and D. E. Walling, "Validating the use of ¹³⁷Cs and ²¹⁰Pb_{ex} measurements to estimate rates of soil loss from cultivated land in southern Italy," *Journal of of Environmental Radioactivity*, vol. 106, pp.47-57, 2012
- K. Meusburger, P. Porto, L. Mabit, C. La Spada, L. Arata, and C. Alewell, "Excess ²¹⁰Pb and Plutonium-239+240: Two suitable radiogenic soil erosion tracers for mountain grassland sites," *Environmental Research*, vol. 160, pp. 195- 202, 2018
- F. Zapata, Handbook for the assessment of soil erosion and sedimentology Using environmental radionuclides, Kluwer Academic Publishers, 2003