ANALISIS AKURASI PAKET PROGRAM WIMSD-5B/CITATION DALAM PERHITUNGAN KRITIKALITAS REAKTOR MSRE ACCURATION ANALYSIS OF THE WIMSD-5B/CITATION CODES ON THE CRITICALITY CALCULATION OF THE MSRE REACTOR

S. Permana(1), D. Tamaza(2), H. Sid'qon(3),


(1) Balitbang Kemenhan
(2) Puslitbang Iptekhan Balitbang – Kementerian Pertahanan
(3) PT. R95 Naval Architect
Corresponding Author

Abstract


ANALISIS AKURASI PAKET PROGRAM WIMSD-5B/CITATION DALAM PERHITUNGAN KRITIKALITAS REAKTOR MSRE. Paket program WIMSD-5B/CITATION telah digunakan sebagai perangkat analitik kekritisan berbagai jenis reaktor dan memberikan hasil yang memuaskan.  Meskipun demikian, paket program ini belum pernah dilakukan untuk menganalisis reaktor MSR (Molten Salt Reactor). Penelitian ini menyajikan analisis akurasi WIMSD-5B/CITATION untuk kritikalitas reaktor MSRE (Molten Salt Reactor Experiment), yaitu reaktor MSR yang pernah dioperasikan sebagai fasilitas eksperimen.  Tujuan penelitian mengetahui akurasi WIMSD-5B/CITATION untuk kritikalitas bahan bakar Tipe C di reaktor MSRE.  Kritikalitas teras reaktor MSRE dihitung dengan 6 kelompok energi neutron dengan model geometri R-Z.  Hasil perhitungan menunjukkan model sel yang menempatkan celah di tengah grafit (Model 1) lebih baik dibanding dengan sel yang menempatkan celah bahan bakar diluar (Model 2). Namun demikian perbedaan relatif dengan eksperimen masih tinggi karena ada perbedaan relatif 7,23%. Akurasi perhitungan kritikalitas didominasi oleh faktor model geometri sel dan teras.  Kemudian data jumlah void dan komposisi pengotor Li-6 juga memiliki pengaruh yang signifikan. Hasil penelitian juga menunjukkan bahwa fluks neutron dan faktor puncak daya radial di teras MSRE sangat sensitif dengan model sel bahan bakar.


Keywords


Molten Salt Reactor, MSRE, WIMSD-5B, CITATION, criticality

References


[1] T. Kulikowska, WIMSD-5B: A neutronic code for standard lattice physics analysis, Saclay, NEA Data Bank, 1996.

[2] D. . Fowler and T.B, Vondy, CITATION: A computer program for solving diffusion theory treating up to three dimension, ORNL-TM-2496 Rev. 2, Oak Ridge, Oak Ridge National Laboratory, 1971.

[3] K. Benaalilou, et al., “Modeling and simulation of a TRIGA MARK-II research reactor using WIMSD-5B and CITATION codes,” Appl. Radiat. Isot., vol. 148, pp. 64-75, 2019.

[4] B. A. Lindley,et al., “Development of a core design capability for innovative boiling water reactor designs for burning transuranic isotopes using WIMS / PANTHER,” Ann. Nucl. Energy, vol. 123, pp. 162–171, 2019.

[5] S. Tashakor, E. Zari, and M. Naminazari, “Neutronic simulation of CAREM-25 small modular reactor,” Progress in Nuclear Energy, vol. 99, pp. 185 - 195, 2017.

[6] M. Rafiei, S. Alireza, and M. Shirazi, “Study of power distribution in the CZP , HFP and normal operation states of VVER-1000 ( Bushehr ) nuclear reactor core by coupling nuclear codes,” Ann. Nucl. Energy, vol. 75, pp. 38–43, 2015.

[7] S. Xia, et al., “Energy development of a molten salt reactor specific depletion code MODEC,” Ann. Nucl. Energy, vol. 124, pp. 88–97, 2019.

[8] Z. Guo et al., “Coupled neutronics/thermal-hydraulics for analysis of molten salt reactor,” Nucl. Eng. Des., vol. 258, pp. 144–156, 2017.

[9] T. Fei, B. Feng, and F. Heidet, “Molten salt reactor core simulation with PROTEUS,” Ann. Nucl. Energy, vol. 140, pp. 1070-1079, 2019.

[10] S. C. Tadepalli, A. Gupta, and K. Umasankari, “Neutronic analysis of MSRE and its study for validation of ARCH code,” Nucl. Eng. Des., vol. 320, pp. 1–8, 2017.

[11] B. M. Elsheikh, “ScienceDirect Safety assessment of molten salt reactors in comparison with light water reactors,” J. Radiat. Res. Appl. Sci., vol. 6, no. 2, pp. 63–70, 2013.

[12] G. Zhu and J. Chen, “Low enriched uranium and thorium fuel utilization under once ‐ through and offline reprocessing scenarios in small modular molten salt reactor,” International Journal of Energy Research, vol. 43, no. 11, pp. 5775-5787, 2019,.

[13] M. B. Chadwick et al., “ENDF / B-VII . 1 Nuclear Data for Science and Technology : Cross Sections , Covariances , Fission Product Yields and Decay Data,” Nucl. Data Sheets, vol. 112, pp. 2887–2996, 2011.

[14] A. C. Kahler et al., “ENDF / B-VII . 1 Neutron Cross Section Data Testing with Critical Assembly Benchmarks and Reactor Experiments,” Nucl. Data Sheets, vol. 112, pp. 2997–3036, 2011.

[15] P. H. Liem, T. Surbakti, and D. Hartanto, “Kinetics parameters evaluation on the first core of the RSG GAS (MPR-30) using continuous energy Monte Carlo method,” Prog. Nucl. Energy, vol. 109, pp. 196–203, 2018.

[16] Zuhair, Suwoto, T. Setiadipura, and Z. Su’ud, “The effects of applying silicon carbide coating on core reactivity of pebble-bed HTR in water ingress accident,” Kerntechnik, vol. 82, pp. 92–97, 2017.

[17] M. Fratoni, et al., Molten salt reactor experiment benchmark evaluation, Project 16-10240, Barkeley: University of California, 2020.

[18] J. Krepel, Dynamics of molten salt reactors, Prague, Checz Technical University, 2006.


Full Text: PDF (Bahasa Indonesia)

DOI: 10.17146/gnd.2021.24.1.6146

Copyright (c) 2021 GANENDRA Majalah IPTEK Nuklir

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.