PENGARUH PERBANDINGAN MOL Ce/Total DALAM LARUTAN UMPAN TERHADAP KERNEL CSZ HASIL SINTER.

Sri Rinanti Susilowati, R Sukarsono, Erilia Yusnitha

DOI: http://dx.doi.org/10.17146/gnd.2019.22.1.5305

Sari


Abstrak

PENGARUH PERBANDINGAN MOL Ce/TotalDALAM LARUTAN UMPAN TERHADAP KERNEL CSZ HASIL SINTER. Telah dilakukan pembuatan kernel ceria stabilized zirconia (CSZ) metode gelasi eksternal. Sebagai bahan dasar umpan gelasi menggunakan Ce(NO3)3.6H2O dan ZrO(NO3)2.2H2O dengan variasi perbandingan mol (Zr/Total) nitrat 12, 24, 36, 48 dan 60% dalam larutan umpan. Untuk memperoleh gel yang baik, parameter kunci yang harus dipenuhi pH sol, viskositas umpan, frekuensi, amplitude dan flow rate umpan. Pada proses pencucian, konduktivitas air cucian terakhir dikondisikan pada ≤ 20µS/cm setara 0,001 % berat kandungan NH4OH. Proses pengeringan dilakukan pada kondisi vakum pada 80°C, kalsinasi suhu 500°C , laju pemanasan < 2°C suasana atmosfer. Gel CSZ hasil pengeringan diukur diameternya dan kondisi fisiknya menggunakan mikroskop digital. Karakterisasi menggunakan DTA-TGA menunjukkan adanya puncak endotermis pada suhu sekitar 80°C hingga suhu 189°C, di mana terjadi pengurangan massa sebesar 18,75%, dan puncak eksotermis, terjadi pengurangan massa 11,34%. Puncak endotermis terlihat ada penguapan air dan sisa ammonia dalam gel, puncak eksotermis karena terjadi dekomposisi bahan-bahan organik, ammonium nitrat dalam gel. Dari variasi perbandingan mol Ce/Total gel yang terbaik hingga proses kalsinasi dan sintering hingga suhu 1350°C adalah 12 dan 24 %, gel masih terlihat utuh tidak pecah maupun retak, gel hasil kalsinasi memiliki spektrum IR dengan frekuensi vibrasi pada nilai yang dimiliki gugus fungsi hidroksil, nitrat, cerium dan zirkonium oksida. Kernel CSZ tersinter menghasilkan difraktogram senyawa Zirconium Cerium Oxide dengan struktur kristal tetragonal.



Kata Kunci


sol gel, gelasi ekternal, ceria stabilized zirconia, karakterisasi

Teks Lengkap:

PDF

Referensi


DAFTAR PUSTAKA

[1]. M. Karol, T. John, and J. Zhao, “Small and Medium sized Reactors ( SMR ): A review of technology,” Renew. Sustain. Energy Rev., vol. 44, pp. 643–656, 2015.

[2]. M. A. Fütterer et al., “Status of the very high temperature reactor system,” Prog. Nucl. Energy, vol. 77, pp. 266–281, 2014.

[3]. R. D. E. Tahap, I. Proyek, and M. D. Birmano, “Kajian Kebutuhan SDM Reaktor Daya Eksperimental,” September, pp. 180–189, 2015.

[4]. C. Tang, Y. Tang, J. Zhu, Y. Zou, and J. Li, “Design and manufacture of the fuel element for the 10 MW high temperature gas-cooled reactor,” vol. 218, pp. 91–102, 2002.

[5]. R Sukarsono and Meniek Rahmawati, “Pengaruh ViskositasSol DanPresolidifikasi Pada Gelasi Eksternal Dalam Pembuatan Gel Amonium ,” Urania, pp. 69–86, 2017.

[6]. Sukarsono; M Rachmawati; S R Susilowati; D Husnurrofiq; K Nurwidyaningrum; Ariyani Dewi., “Effect of Sol Concentration , Aging and Drying Process on Cerium Stabilization Zirconium Gel Produced by External Gelation Effect of Sol Concentration , Aging and Drying Process on Cerium Stabilization Zirconium Gel Produced by External Gelation,” Int. Conf. Nucl. Technol. Sci. (ICoNETS 2017) IOP Publ. IOP Conf. Ser. J. Phys. Conf. Ser., vol. Series 962, 2018.

[7]. G. Wang et al., “Preparation of ceria-stabilized zirconia microspheres by external gelation: size control,” J Sol-Gel Technol, vol. 78, no. 3, pp. 514–522, 2016.

[8]. G. Wang et al., “A comparative study of small-size ceria–zirconia microspheres fabricated by external and internal gelation Guogao,” J Sol-Gel Sci Technol, vol. 78, pp. 673–681, 2016.

[9]. K. Sorochkina, R. Smotraiev, and I. Chepurna, “Zirconium and aluminum oxyhydroxides particles formation during sol–gel process,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 484, pp. 56–61, 2015.

[10]. M. Li, “Making spherical zirconia particles from inorganic zirconium aqueous sols,” Powder Technol., vol. 137, pp. 95–98, 2003.

[11]. S. Ueta, J. Aihara, K. Sawa, A. Yasuda, M. Honda, and N. Furihata, “Development of high temperature gas-cooled reactor (HTGR) fuel in Japan,” Prog. Nucl. Energy, vol. 53, no. 7, pp.788–793, 2011.

[12]. Z. Xiangwen et al., “Preparation of spherical fuel elements for HTR-PM INET,” Nucl. Eng.Des., vol. 263, pp. 456–461, 2013.

[13]. H. Shaochang, M. Jingtao, Z. Xingyu, W. Yang, and Z. Xiangwen, “Largescale production ofUO 2 kernels by sol – gel process at INET,” Nucl. Eng. Des., vol. 271, pp. 158–161, 2014.

[14]. Rongzheng Liu, Malin Liu∗, Youlin Shao, Xiaotong Chen, Jingtao Ma, Bing Liu, "A novel coated-particle design and fluidized-bed chemical vapordeposition preparation method for fuel-element identification in anuclear reactor", INET, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Tsinghua University, Particuology, vol 31, pp 35-41, 2017

[15]. Enhui Zhou, Yadong Zhang, Yuemin Zhao⁎, Zhenfu Luo, Chenlong Duan, Xuliang Yang⁎, Liang Dong, Bo Zhang:, "Collaborative optimization of vibration and gasflow onfluidizationquality andfine coal segregation in a vibrated dense mediumfluidized bed", Powder Technology, vol 322, pp497- 509, 2017

[16]. Rongzheng Liu, Malin Liu*, Jiaxing Chang, Youlin Shao, Bing Liu:"An improved design of TRISO particle with porous SiC inner layer byfluidized bed-chemical vapor deposition, An improved design of TRISO particle with porous SiC inner layer byfluidized bed-chemical vapor deposition", INET, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Tsinghua University, Nuclear Materials, vol 467, pp 917-926, 2015

[17]. Robert M. Silverstein, Francis X, Webster, David J. Kiemle, David L. Bryce : "Spectrometric Identification of Organic Compounds" pp.72-110,2014


Refbacks

  • Saat ini tidak ada refbacks.


##submission.copyrightStatement##

##submission.license.cc.by-nc-sa4.footer##