KEHILANGAN H2O SELAMA REAKSI PELINDIAN MINERAL ZIRCON DENGAN NaOH DI DALAM FURNACE

Triyono Budiharjo(1), Muzakky Akhmad Mutawali(2),


(1) PSTA - BATAN
(2) PSTA - BATAN
Corresponding Author

Abstract


KEHILANGAN H2O SELAMA REAKSI PELINDIAN MINERAL ZIRCON DENGAN NaOH DI DALAM FURNACE.  Telah dilakukan prediksi jumlah kehilangan H2O selama proses peleburan mineral zirkon dengan NaOH di dalam furnace.  Proses awal pemurnian zirkonium dimulai dari pelindian mineral zirkon dengan NaOH. Selama proses peleburan akan dikeluarkan H2O yang diperkirakan akan membawa Rn-222 dan Rn-220 yang berbahaya bagi pekerja radiasi.  Maka tujuan dari pelitian ini adalah melakukan prediksi jumlah kehilangan H2O pada reaksi pelindian mineral zirkon dengan NaOH di dalam furnace dan keluar ke udara. Kehilangan H2O dihitung berdasarkan mol sebelum reaksi peleburan dikurangi dengan sesudah reaksi peleburan.  Hasil pengamatan menunjukkan bahwa semakin tinggi temperatur dan lama waktu kontak, kehilangan mole H2O akan semakin besar.  Besarnya kehilangan mole H2O akan dipengaruhi oleh mole rasio ZrSiO4/NaOH. Kecuali pada mol rasio ZrSiO4/NaOH (1:4), mol kehilangan H2O berharga sama dengan mol rasio ZrSiO4/NaOH (1:2).  Kehilangan mol H2O dicapai pada mol rasio ZrSiO4/NaOH (1:8), pada temperatur 950 ˚C dan waktu kontak 60 menit sebesar 0,024 mole/gr.  Pada kondisi tersebut sisa fase kristal ZrSiO4 tidak terbentuk, tetapi sampel mengandung sisa NaOH yang tidak bereaksi dan bersifat pasta.

 

 


Keywords


mol rasio ZrSiO4/NaOH, mineral zirkon, peleburan

References


DAFTAR PUSTAKA

[1]. H. Poernomo, ‘Prospek bisnis pengolahan pasir zirkon lokal menjadi produk zirkonium dan oksida logam tanah jarang bebas radioaktif badan tenaga nuklir nasional’, 2014.

[2]. M. M. Zaman et al., ‘Presence of uranium and thorium in zircon assemblages separated from beach sands of Cox’s Bazar, Bangladesh’, J. Sci. Technol. Environ. Informatics, vol. 3, no. 1, pp. 161–169, 2016

[3]. M. A. Coble, S. D. Burgess, and E. W. Klemetti, ‘New zircon (U-Th)/He and U/Pb eruption age for the Rockland tephra, western USA’, Quat. Sci. Rev., vol. 172, pp. 109–117, 2017.

[4]. P. Boehnke, M. Barboni, and E. A. Bell, ‘Zircon U/Th model ages in the presence of melt heterogeneity’, Quat. Geochronol., vol. 34, pp. 69–74, 2016.

[5]. M. Danišík, A. K. Schmitt, D. F. Stockli, O. M. Lovera, I. Dunkl, and N. J. Evans, ‘Application of combined U-Th-disequilibrium/U-Pb and (U-Th)/He zircon dating to tephrochronology’, Quat. Geochronol., vol. 40, pp. 23–32, 2017.

[6]. J. Liu, J. Song, T. Qi, C. Zhang, and J. Qu, ‘Controlling the formation of Na2ZrSiO5in alkali fusion process for zirconium oxychloride production’, Adv. Powder Technol., vol. 27, no. 1, pp. 1–8, 2016.

[7]. E. Zolfonoun, A. B. Monji, M. Taghizadeh, and S. J. Ahmadi, ‘Selective and direct sorption of zirconium from acidic leach liquor of zircon concentrate by rice bran’, Miner. Eng., vol. 23, no. 9, pp. 755–756, 2010.

[8]. M. Abo-Elmagd, ‘Radon exhalation rates corrected for leakage and back diffusion – Evaluation of radon chambers and radon sources with application to ceramic tile’, J. Radiat. Res. Appl. Sci., vol. 7, no. 4, pp. 390–398, 2014.

[9]. V. Moreno, J. Bach, M. Zarroca, L. Font, C. Roqué, and R. Linares, ‘Characterization of radon levels in soil and groundwater in the North Maladeta Fault area (Central Pyrenees) and their effects on indoor radon concentration in a thermal spa’, J. Environ. Radioact., vol. 189, no. March, pp. 1–13, 2018.

[10]. H. Keramati et al., ‘Radon 222 in drinking water resources of Iran: A systematic review, meta-analysis and probabilistic risk assessment (Monte Carlo simulation)’, Food Chem. Toxicol., vol. 115, no. January, pp. 460–469, 2018.

[11]. Telahigue, B. Agoubi, F. Souid, and A. Kharroubi, ‘Groundwater chemistry and radon-222 distribution in Jerba Island, Tunisia’, J. Environ. Radioact., vol. 182, no. November 2017, pp. 74–84, 2018.

[12]. L. H. Gevantman, ‘Solubility of Selected Gases in Water’, CRC Handb. Chem. Phys., pp. 5–8, 2015.

[13]. N. Vogeltanz-Holm and G. G. Schwartz, ‘Radon and lung cancer: What does the public really know?’, J. Environ. Radioact., vol. 192, no. January, pp. 26–31, 2018.

[14]. R. K. Biswas, M. A. Habib, A. K. Karmakar, and M. R. Islam, ‘A novel method for processing of Bangladeshi zircon: Part I: Baking, and fusion with NaOH’, Hydrometallurgy, vol. 103, no. 1–4, pp. 124–129, 2010.

[15]. R. J. F. Da Silva, A. J. B. Dutra, and J. C. Afonso, ‘Alkali fusion followed by a two-step leaching of a Brazilian zircon concentrate’, Hydrometallurgy, vol. 117–118, pp. 93–100, 2012.

[16]. S. Lubbe, R. Munsami, and D. Fourie, ‘Beneficiation of zircon sand in South Africa’, J. South. African Inst. Min. Metall., vol. 112, no. 7, pp. 583–588, 2012.

[17]. N. Van Tuyen, V. T. Quang, T. G. Huong, and V. H. Anh, ‘Preparation of High Quality Zirconium’, VAEC-Anual Rep., vol. 7, no. 43, pp. 286–291, 2007.

[18]. D. . Aminhar, ‘Kalibrasi muffle furnace’, Urania, vol. VI, no. 21–22, pp. 9–13, 2000.

[19]. A. Kaiser, M. Lobert, and R. Telle, ‘Thermal stability of zircon (ZrSiO4)’, J. Eur. Ceram. Soc., vol. 28, no. 11, pp. 2199–2211, 2008.

[20]. A. M. Abdel-Rehim, ‘A new technique for extracting zirconium form Egyptian zircon concentrate’, Int. J. Miner. Process., vol. 76, no. 4, pp. 234–243, 2005.

[21]. C. Yamagata, J. B. Andrade, V. Ussui, N. B. de Lima, and J. O. A. Paschoal, ‘High Purity Zirconia and Silica Powders via Wet Process: Alkali Fusion of Zircon Sand’, Mater. Sci. Forum, vol. 591–593, pp. 771–776, 2008.


Full Text: PDF (Bahasa Indonesia)

DOI: 10.17146/gnd.2019.22.1.4625

Copyright (c) 2019 GANENDRA Majalah IPTEK Nuklir

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.