ANALISIS PENGATURAN POSISI CONTROL RODS PADA KONSEP REAKTOR DAYA EKSPERIMENTAL INDONESIA PASCA REACTOR SCRAM

Syarip, Khoirul Anam, Dwi Priyantoro(1),


(1) PSTA BATAN
Corresponding Author

Abstract


ANALISISPENGATURAN POSISI CONTROL RODS PADA KONSEP REAKTOR DAYA EKSPERIMENTAL INDONESIA PASCA REACTOR SCRAM

POST REACTOR SCRAM CONTROL RODS POSITION ADJUSTMENT ANALYSIS FOR THE INDONESIAN EXPERIMENTAL POWER REACTOR CONCEPT.

ABSTRAK

ANALISIS PENGATURAN POSISI CONTROL RODS PADA KONSEP REAKTOR DAYA EKSPERIMENTAL INDONESIA PASCA REACTOR SCRAM. Telah dilakukan analisis simulasi pengaturan posisi batang-batang kendali untuk melanjutkan operasi reaktor daya eksperimental (RDE) paska scram setelah beroperasi pada periode waktu tertentu. Pengendalian reaktivitas pada reaktor RDE yang akan dibangun di Indonesia dengan rujukan high temperature gas reactor (HTR) 10 MWt, dilakukan dengan 10  pasang batang-batang kendali atau control rod (CR). Apabila terrjadi kondisi abnormal maka CR secara otomatis akan jatuh tersisip ke dalam reflektor  reaktor sehingga reaktor scram dan berada pada kondisi subkritis. Untuk melanjutkan operasi reaktor pasca scram diperlukan analisis terkait pengaruh reaktivitas negatif dari Xenon dan suhu. Pada makalah ini disajikan hasil simulasi yang dilakukan untuk penentuan posisi CR paling optimum untuk melanjutkan operasi reaktor, menggunakan simulator PCTRAN-HTR. Simulasi dilakukan pada variasi 70%, 85% dan 100% dari tingkat daya penuh dan dengan variasi waktu operasi 50 s, 10.000 s, dan 20.000 s di mana setelah reaktor beroperasi pada tingkat-tingkat daya dan waktu operasi tersebut reaktor mengalami scram. Untuk melanjutkan operasi lagi maka CR harus dinaikkan lagi dan diatur ke posisi tertentu sampai   reaktor mencapai kondisi kritis lagi pada tingkat daya nominal tersebut. Hasil yang telah diperoleh menunjukkan bahwa dengan posisi CR naik 52 % sudah bisa menghasilkan kondisi kritis dan mampu mengatasi reaktivitas negatif peracunan xenon maupun suhu.

Kata kunci: RDE, HTR, operasi reaktor, batang kendali, reaktivitas, scram

ABSTRACT

POST REACTOR SCRAM CONTROL RODS POSITION ADJUSTMENT ANALYSIS FOR THE INDONESIAN EXPERIMENTAL POWER REACTOR CONCEPT. Analytical study using PC-based simulator has been carried out on control rods position adjustment of the Indonesian experimental power reactor concept or reaktor daya ekperimental (RDE) in a post reactor scram to continue operation after a certain operation period. Reactivity control of the RDE uses 10 pairs of control rods (CRs), which is based on that applied in the high temperature gas reactor (HTR) 10 MW(t). If an abnormal operating condition occurs, these control rods automatically dropped to the reflector that bring the reactor into a scram and subcritical condition. To continue reactor operation after a period of time, the CRs should be withdrawn to achieve recriticality. Prior to any CRs withdrawal, an analysis of negative reactivity effects of Xenon (poissoning) and fuel temperature coefficient should be done. Simulations using PCTRAN-HTR simulator to determine the optimum CRs positions in achieving reactor criticality for continuation of reactor operation is presented in this paper. The simulations were conducted by varying the reactor power levels at 70%, 85% and 100% of full power, respectively. The reactor operation time was varied at 50s, 10000s, and 20000 s prior to the reactor scram. Adjustment of CRs position should be done to continue reactor operation at those nominal power levels by withdrawing the CRs to the proper positions. The simulation results show that recriticality can be achieverd by whitdrawing the CRs 52% of farther and the negative reactivity from xenon poisoning and temperature could be overcome.

Keywords : RDE, HTR, reactor operation, control rod, reactivity, scram.


Keywords


RDE, HTR, operasi reaktor, batang kendali, reaktivitas, scram

References


Anonim, “User Requirement Document – Reaktor Daya Eksperimental ”, BATAN (2014).

IAEA-TECDOC-1382, “Evaluation of High Temperature Gas-Cooled Reactor Performance: Beenchmark Analysis Related to Initial Testing of the HTTR and HTR-10”, IAEA, Vienna, Austria, November 2003.

IAEA-TECDOC-1694, “Evaluation of High Temperature Gas Cooled Reactor Performance: Benchmark Analysis Rrelated to the PBMR-400, PBMM, GT-MHR, HTR-10 and the ASTRA Critical Facility”, IAEA, Vienna, Austria, 2013.

Syarip, KAK Litbang Simulator Hibrid Berbasis Reaktor Kartini Untuk Pelatihan Pengendalian RDE, Dok. Teknik, PSTA BATAN, 2015.

Sui Zhe, Sun Jun, Wei Chunlin, Ma Yuanle, “The Engineering Simulation System for HTR-PM”, Nuclear Engineering and Design, 271 (2014) 479–486

Takamatsu, et, al. High Temperature Continuous Operation int HTTR (HP-11)-Summary of the Test Result in the High Temperature Operation Mode, JAEA Tech 2010-038, Oarai-machi: JAEA, 2010.

Takeda, et. al. Safety Shutdown of the High Temperature Engineering Test Reactor during Loss of Off-site Electric Power Simulation Test, Oarai-Machi:Taylor & Francis. 2002

Tochio, et. al. Operating Experience since Rise to Power Test in High Temperature Engineering Test Reactor (HTTR), JAEA Technology, Shirakata Shirane: JAEA. 2007

Fubing Chen, Yujie Dong, and Zuoyi Zhang, “Temperature Response of the HTR-10 during the Power Ascension Test”, Science and Technology of Nuclear Installations, (2015):13. Article ID 302648, Hindawi Publishing Corporation. http://dx.doi.org/10.1155/2015/302648

Fubing CHEN , Yujie DONG , Yanhua ZHENG , Lei SHI & Zuoyi ZHANG, “Benchmark Calculation for the Steady-State Temperature Distribution of the HTR-10 Under Full-Power Operation”, Journal of Nuclear Science and Technology, 46:6, (2009): 572-580, DOI: 10.1080/18811248.2007.9711564

Manual of PCTRAN HTR Simulator Software for PC, Micro-Simulation Technology 10 Navajo Court Montville, New Jersey 07045 USA, 2015.

Vahid Motamedi, “Computer Presentation Programs and Teaching Research Methodologies”. Journal of Education and Learning. 9:2 (2015): 111-116.

Minggang Langa, Yujie Dongba, “The ATWS Analysis of One Control Rod Withdraw Out of the HTR-10GT Core in Addition With Bypass Valve Failure”. Nuclear Engineering and Design, 271 (2014): 459–464.

ZHOU Yangping, et, al, “Thermal-hydraulic Simulation of the Primary Loop of the HTR”. Nuclear Safety and Simulation, 1:4 (2010).

JUN et al., “The Benchmark Calculations of the GAMMA+ Code with the HTR-10 Safety Demonstration Experiments”, Nuclear Engineering and Technology, 41:3 (2009): 317.


Full Text: PDF (Bahasa Indonesia)

DOI: 10.17146/gnd.2016.19.2.3008

Copyright (c) 2018 GANENDRA Majalah IPTEK Nuklir

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.