Distribution and Mineralogical Characteristic of Raya Volcanics, West Kalimantan

Windi Anarta Draniswari, Fadiah Pratiwi, Ngadenin Ngadenin, I Gde Sukadana, Tyto Baskara Adimedha, Roni Cahya Ciputra, Ekky Novia Stasia Argianto, Erwina Aminarthi, Vertika Dhianda Supraba

DOI: http://dx.doi.org/10.55981/eksplorium.2021.6511

Abstract


ABSTRACT. There are several volcanic rocks in a radius of 150 km from where the Nuclear Power Plant (NPP) site project in West Kalimantan. The Mesozoic volcanic rocks have not been characterized for volcanic hazard evaluation purposes due to their old age. However, the distribution of Raya Volcanic Rocks that covers the site area and the wider area up to 150 kilometers from the site makes this rock group quite important to be characterized to find out how its activities in the past. This paper’s objective is to comprehend the distribution and characteristics of Raya Volcanic Rocks for NPP site volcanic hazard evaluation purposes. Fieldwork and lineament analyses were conducted to map and interpret the distribution of Raya Volcanic Rocks while mineralogical analysis using petrography and micro XRF were conducted to characterize the Raya Volcanic Rocks. The distribution of Raya Volcanic Rocks that relatively show NNW–SSE orientation is probably controlled by the NNW–SSE fault system. The analyses resulted that Raya Volcanic Rocks erupted as lava flows derived from mafic magma as a product of mantle partial melting that underwent crystal fractionation, injection of hotter/more Ca-rich magma, and magma mixing on an open-system magmatic process.

ABSTRAK. Terdapat beberapa batuan vulkanik dalam radius 150 km dari lokasi proyek tapak Pembangkit Listrik Tenaga Nuklir (PLTN) di Kalimantan Barat. Batuan vulkanik Mesozoikum belum dikarakterisasi untuk tujuan evaluasi bahaya vulkanik karena umurnya yang relatif tua. Namun, sebaran Batuan Vulkanis Raya yang meliputi area tapak dan wilayah yang lebih luas hingga 150 kilometer dari tapak menjadikan gugusan batuan ini cukup penting untuk dikarakterisasi untuk mengetahui bagaimana aktivitasnya di masa lalu. Penelitian ini bertujuan memahami sebaran dan karakteristik Batuan Vulkanik Raya untuk evaluasi bahaya gunung api di lokasi PLTN. Observasi lapangan dan analisis kelurusan dilakukan untuk memetakan dan menginterpretasi sebaran Batuan Vulkanik Raya, sedangkan analisis mineralogi menggunakan petrografi dan XRF mikro dilakukan untuk mengkarakterisasi Batuan Vulkanik Raya. Sebaran Batuan Vulkanik Raya yang relatif menunjukkan orientasi NNW–SSE kemungkinan dikendalikan oleh sistem sesar berarah NNW–SSE. Berdasarkan analisis yang telah dilakukan, Batuan Vulkanik Raya meletus sebagai aliran lava yang berasal dari magma mafik sebagai produk pencairan parsial mantel yang kemudian mengalami fraksionasi kristal, injeksi magma yang lebih panas/kaya Ca, serta pencampuran magma pada proses magmatik sistem terbuka.


Keywords


Raya Volcanics, distribution, petrography, micro-XRF, magmatic process

Full Text:

PDF

References


[1] P. E. Pieters and S. Supriatna, “Peta Geologi Daerah Kalimantan Barat, Tengah, dan Timur Skala 1:1.000.000,” Bandung, 1990.

[2] N. Suwarna, Sutrisno, F. de Keyser, R. P. Langford, and D. S. Trail, “Peta Geologi Lembar Singkawang, Kalimantan Skala 1:250.000,” Bandung, 1993.

[3] P. E. Pieters and P. Sanyoto, “Peta Geologi Daerah Nangataman dan Pontianak 1:250.000 Kalimantan Barat,” Bandung, 1993.

[4] E. Rusmana, R. P. Langford, F. Keyser, and D. S. Trail, “Peta Geologi Lembar Sambas/Siluas, Kalimantan Skala 1:250.000,” Bandung, 1993.

[5] S. Supriatna, U. Margono, Sutrisno, F. d. Keyser, R. P. Langford, and D. S. Trail, “Geologi Lembar Sanggau, Kalimantan Skala 1:250.000,” Bandung, 1993.

[6] IAEA, “Volcanic Hazard Assessments for Nuclear Installations: Methods and Examples in Site Evaluation,” IAEA Tecdoc Ser., vol. 1795, p. 283, 2016.

[7] F. N. Hussein et al., “Potensi Bahaya Gunung Api Terhadap Calon Tapak PLTN, Studi Kasus: Gunung Api Semadum, Kalimantan Barat,” J. Pengemb. Energi Nukl., vol. 22, no. 2, p. 89, 2020, doi: 10.17146/jpen.2020.22.2.6124.

[8] Y. Wang et al., “Early Cretaceous Subduction in NW Kalimantan: Geochronological and Geochemical Constraints from the Raya and Mensibau Igneous Rocks,” Gondwana Res., vol. 101, pp. 243–256, 2021, doi: 10.1016/j.gr.2021.08.006.

[9] J. Hennig, H. T. Breitfeld, R. Hall, and A. M. S. Nugraha, “The Mesozoic Tectono-Magmatic Evolution at the Paleo-Pacific Subduction Zone in West Borneo,” Gondwana Res., vol. 48, pp. 292–310, 2017, doi: 10.1016/j.gr.2017.05.001.

[10] H. T. Breitfeld, R. Hall, T. Galin, M. A. Forster, and M. K. BouDagher-Fadel, “A Triassic to Cretaceous Sundaland–Pacific Subduction Margin in West Sarawak, Borneo,” Tectonophysics, vol. 694, pp. 35–56, 2017, doi: 10.1016/j.tecto.2016.11.034.

[11] H. T. Breitfeld et al., “Mesozoic Paleo-Pacific Subduction Beneath SW Borneo: U-Pb Geochronology of the Schwaner Granitoids and the Pinoh Metamorphic Group,” Front. Earth Sci., vol. 8, no. December, 2020, doi: 10.3389/feart.2020.568715.

[12] E. Erzagian, L. D. Setijadji, and I. W. Warmada, “Studi Karakteristik dan Petrogenesis Batuan Beku di Daerah Singkawang dan Sekitarnya, Provinsi Kalimantan Barat,” 2016.

[13] M. J. Streck, “Mineral Textures and Zoning as Evidence for Open System Processes,” Rev. Mineral. Geochemistry, vol. 69, no. 1, pp. 595–622, 2008, doi: 10.2138/rmg.2008.69.15.

[14] D. A. Jerram, K. J. Dobson, D. J. Morgan, and M. J. Pankhurst, “The Petrogenesis of Magmatic Systems: Using Igneous Textures to Understand Magmatic Processes,” in Volcanic and Igneous Plumbing Systems: Understanding Magma Transport, Storage, and Evolution in the Earth’s Crust, S. Burchardt, Ed. Elsevier Inc., 2018, pp. 191–229.

[15] B. Kiss, S. Harangi, E. Pál-Molnár, T. Ntaflos, and P. R. D. Mason, “Amphibole Perspective to Unravel Pre-Eruptive Processes and Conditions in Volcanic Plumbing Systems Beneath Intermediate Arc Volcanoes: A Case Study from Ciomadul Volcano (SE Carpathians),” Contrib. to Mineral. Petrol., vol. 167, no. 3, pp. 1–27, 2014, doi: 10.1007/s00410-014-0986-6.

[16] D. Perugini and G. Poli, “The Mixing of Magmas in Plutonic and Volcanic Environments: Analogies and Differences,” Lithos, vol. 153, pp. 261–277, 2012, doi: 10.1016/j.lithos.2012.02.002.

[17] G. G. Korkmaz and H. Kurt, “Interpretation of the Magma Chamber Processes with the Help of Textural Stratigraphy of the Plagioclases (Konya-Central Anatolia),” Eur. J. Sci. Technol., no. 25, pp. 222–237, 2021, doi: 10.31590/ejosat.898587.

[18] S. T. Nelson and A. Montana, “Sieve-Textured Plagioclase in Volcanic Rocks Produced by Rapid Decompression,” Am. Mineral., vol. 77, no. 11–12, pp. 1242–1249, 1992.

[19] M. L. Renjith, “Micro-Textures in Plagioclase from 1994-1995 Eruption, Barren Island Volcano: Evidence of Dynamic Magma Plumbing System in the Andaman Subduction Zone,” Geosci. Front., vol. 5, no. 1, pp. 113–126, 2014, doi: 10.1016/j.gsf.2013.03.006.

[20] M. Viccaro, P. P. Giacomoni, C. Ferlito, and R. Cristofolini, “Dynamics of Magma Supply at Mt. Etna Volcano (Southern Italy) as Revealed by Textural and Compositional Features of Plagioclase Phenocrysts,” Lithos, vol. 116, no. 1–2, pp. 77–91, 2010, doi: 10.1016/j.lithos.2009.12.012.

[21] M. Viccaro, M. Giuffrida, E. Nicotra, and A. Y. Ozerov, “Magma Storage, Ascent and Recharge History Prior to the 1991 Eruption at Avachinsky Volcano, Kamchatka, Russia: Inferences on the Plumbing System Geometry,” Lithos, vol. 140–141, no. January, pp. 11–24, 2012, doi: 10.1016/j.lithos.2012.01.019.

[22] D. Ray, S. Rajan, R. Ravindra, and A. Jana, “Microtextural and Mineral Chemical Analyses of Andesite-Dacite from Barren and Narcondam Islands: Evidences for Magma Mixing and Petrological Implications,” J. Earth Syst. Sci., vol. 120, no. 1, pp. 145–155, 2011, doi: 10.1007/s12040-011-0006-4.

[23] C. H. Donaldson and C. M. B. Henderson, “A New Interpretation of Round Embayments in Quartz Crystals,” Mineral. Mag., vol. 52, no. 364, pp. 27–33, 1988, doi: 10.1180/minmag.1988.052.364.02.

[24] R. G. Azzone, P. Montecinos Munoz, G. E. R. Enrich, A. Alves, E. Ruberti, and C. B. Gomes, “Petrographic, Geochemical and Isotopic Evidence of Crustal Assimilation Processes in the Ponte Nova Alkaline Mafic-Ultramafic Massif, SE Brazil,” Lithos, vol. 260, pp. 58–75, 2016, doi: 10.1016/j.lithos.2016.05.004.

[25] M. J. Krawczynski, T. L. Grove, and H. Behrens, “Amphibole Stability in Primitive arc Magmas: Effects of Temperature, H2O Content, and Oxygen Fugacity,” Contrib. to Mineral. Petrol., vol. 164, no. 2, pp. 317–339, 2012, doi: 10.1007/s00410-012-0740-x.

[26] M. Cassidy, M. Manga, K. Cashman, and O. Bachmann, “Controls on Explosive-Effusive Volcanic Eruption Styles,” Nat. Commun., vol. 9, no. 1, 2018, doi: 10.1038/s41467-018-05293-3.

[27] E. Cañón-Tapia, “Vent Distribution and Sub-Volcanic Systems: Myths, Fallacies, and Some Plausible Facts,” Earth-Science Rev., vol. 221, no. 1, p. 103768, 2021, doi: 10.1016/j.earscirev.2021.103768.


Refbacks

  • There are currently no refbacks.




Google Scholar Logo SINTA Logo Logo GARUDA


Copyright EKSPLORIUM: Buletin Pusat Pengembangan Bahan Galian Nuklir (e-ISSN 2503-426x p-ISSN 0854-1418)

National Research and Innovation Agency (BRIN), KA. B.J. Habibie, Jl. M.H. Thamrin No.8, Jakarta, 10340, Indonesia.