Model Matematik Reduksi Thorium dalam Proses Elektrokoagulasi

Prayitno Prayitno, Vemi Ridantami

DOI: http://dx.doi.org/10.55981/eksplorium.2017.3566

Abstract


Abstrak

Reduksi thorium dengan elektrokoagulasi telah dilakukan pada limbah radioaktif yang memiliki kadar kontaminan thorium 5x10-4kg/l dengan sistem batch menggunakan elektrode-elektrode aluminium. Penelitian ini bertujuan untuk mengetahui model matematik reduksi thorium melalui kecepatan reaksi, konstanta laju reaksi, dan orde reaksi yang dipengaruhi oleh parameter proses elektrokoagulasi seperti tegangan, waktu, jarak elektrode, dan pH. Penelitian menghasilkan kondisi optimum tegangan 12,5V, jarak 1 cm, pH 7, dan waktu proses 30 menit dengan efisiensi sebesar 99,6%. Prediksi nilai konstanta laju penurunan thorium didapatkan melalui perhitungan matematika dengan metode integral. Hasil penelitian menunjukkan laju penurunan thorium mengikuti konstanta orde dua dengan nilai konstanta laju penurunan thorium 5x10-3 KgL-1min-1.

 

Abstract

Thorium reduction by electrocoagulation has been conducted on radioactive waste with thorium contaminant grade of 5x10-4Kg/l through a batch system using aluminium electrodes. This study aims to determine a mathematical model of thorium reduction through speed reaction, constante reaction rate and reaction order which are affected by electrocoagulation process parameters like voltage, time, electrode distance, and pH. The research results the optimum voltage condition at 12.5 V at 1 cm electrode spacing, pH 7, and 30 minutes of processing time with 99.6 % efficiency. Prediction on thorium decline rate constante is obtained through mathematic integral method calculation. The research results thorium decline rate is following second order constante with its value at 5x10-3KgL-1min-1.


Keywords


kinetika; elektrokoagulasi; plat aluminium; thorium

References


[1] BBC, “Electrolysis,” 2016. [Online]. Available: http://www.bbc.co.uk/schools/gcsebitesize/science/triple_ocr_gateway/chemistry_out_there/electrolysis/revision/2/. [Accessed: 10-Feb-2016].

[2] A. Lukismanto dan A. F. Assomadi, Aplikasi Elektrokoagulasi Pasangan Elektrode Besi untuk Pengolahan Air dengan Sistem Kontinyu, Jurusan Teknik Lingkungan FTSP-ITS, Surabaya, 2007.

[3] A. P. Kristijarti, I. Suharto, dan Marienna, Penentuan Jenis Koagulan dan Dosis Optimum untuk Meningkatkan Efisiensi Sedimentasi dalam Instalasi Pengolahan air Limbah, Lembaga Penelitian dan Pengabdian Masyarakat, Bandung, 2013.

[4] P. Gebbie, A Dummy’s Guide to Coagulants”, 68th Annual Water Industry Engineers and Operators, Conference Schweppes Centre, Bendigo, 2005.

[5] P. Wulan, Dianursanti, M. Gozan, W. A. Nugroho, “Optimasi Penggunaan Koagulan pada Pengolahan Air Limbah Batubara”, Prosiding Seminar Nasional Teknik Kimia, Yogyakarta, ISSN 1693-4393, 2010.

[6] A. Setiawan, O. V. Sari, dan Bunawan, ”Penentuan Konsentrasi Uranium dalam Air Minum dalam Kemasan (AMDK) Menggunakan Metode Jejak Fisi”, Prosiding PPI-PDIPTN-BATAN, Yogyakarta, ISSN 0216-3128, 2017.

[7] R. Kamaraj and R. Vasudevan, “Evaluation of Electrocoagulation Process for the Removal of Stronsium and Cesium from Aqueous Solution”, Chemical Engineering Research and Design 93, Elsever 522-530, 2015.

[8] A. S. Eskobar, A. P. Mateus, A. L. Vasquez, Electrocoagulation-Photocatalytic Process for the Treatment of Lithographic Wastewater Optimization Using Response Surface Methodology (RSM) and Kinetic Study, Catalysis Today, Colombia, 2015.

[9] L. Riadi, W. Ferydhiwati, dan L. Loeman, “Pengolahan Primer Limbah Tekstil dengan Elektrokoagulasi dan Analisis Biaya Operasi”, Reaktor, Vol. 15, No 2, pp. 73-78, Surabaya, 2014.

[10] O. Levenspiel, Chemical Reaction Engineering Third Edition, Depatment of Chemical Engineering Oregon State University, New York, 1999.

[11] M. Al-Shannag, Z. Al-Qodah, K. B. Melhem, M. R. Qtaishat, and M. Alkasrawi, ”Heavy Metal Ions Removal from Metal Plating Waste Water Using Electrocoagulation, chemical enggineering Journal, 260, 749-756, Elsevier,2015.

[12] P. Holt, G. Barton, and C. Mitchel, ”The Future for Electrocoagulation as a Localised Water Treatment Technology”,Chemosphere 59, page 355-367,Australia, 2005.

[13] A. Guzman, J. Nava, O. Coreno, I. Rodriguez, and S. Gutierrez, “Arsenic and Fluoride Removal from Groundwater by Electrocoagulation Using Continous Filter-Press Reactor, Chemosphere 144,2113-2120, Elsevier,2016.

[14] Prayitno, V. Ridantami, dan I. Prayogo, “Reduksi Aktivitas Uranium dalam Limbah Radioaktif Cair Menggunakan Proses Elektrokoagulasi”, Jurnal Ilmiah Daur Bahan Bakar Nuklir URANIA, Volume 22, No. 3, pp 189-202, p ISSN 0852-4777;e ISSN 2528-0473.

[15] Siringo-ringo, A. Kusrijadi, dan Y. Sunarya, “Penggunaan Metode Elektrokoagulasi Pada Pengolahan Limbah Industri Penyamakan Kulit Menggunakan alumunium sebagai Sacrificial Elektrode”, Jurnal Sains dan Teknologi Kimia, Volume 4, No. 2, pp. 96-107, ISSN 2087-7412, Bandung, 2013.

[16] N. C. Wahyulis dan I. Ulfin, “Optimasi Tegangan pada Proses Elektrokoagulasi Penurunan kadar kromium dari filtrat Hasil Hidrolisis limbah Padat Penyamakan Kulit”, Jurnal Sains dan Seni Pomits, Vol. 3, No. 2, pp. 2337-3520, Surabaya, 2014.

[17] M. Anggraini, B. Sarono, S. Waluyo, Rusydi, dan Sujono, “Pengendapan Uranium dan Thorium hasil pelarutan slag II”, Eksplorium, volume 36, No 2, pp. 125-132, 2015.

[18] E. Gatsious, J. N. Haladakis, and E. Gidarakos, ”Optimization of Elektrocoagulation Process for the Purification of a Real Industrial Wastewater from Toxic Metals” Journal of Environmental Management, 154, pp. 117-127, Greece, 2015.

[19] E. H. Ezechi, M. H. Isa, S. R. Kutty, and A. Yaqub, “Boron removal from produced water using electrocoagulation”, Process safety and Environmental Protection 92, pp. 509-514, Malaysia, 2014.

[20] A. Attour, M. Touati, M. Tlili, M. Amor, F. Lapicque, and P. Leclerc, “Influence of Operating Parameters on Phosphate Removal from Water by Electrocoagulation Using Alumunium Electrodes”, Separation and Purification Technology 123, pp. 124-129, Elsevier, 2014.

[21] M. Kobya and E. Demirbas, ”Evaluation of Operating Parameters on Treatment of can Manufacturing Wastewater by Electrocoagulation”, Journal of Water Process Engineering 8, pp. 64-74, 2015.

[22] T. Harif, M. Khai, and A. Adin, ”Electrocoagulation versus Chemical Coagulation:coagulation/flocculation mechanisms and resulting flog characteristics”Water Research 46, pp. 3177-3188, Elsevier, 2012.

[23] F. Hanum, R. Tambun, Y. M. Ritonga, W. W. Kasim, “Aplikasi Elektrokoagulasi dalam Pengolahan Limbah Cair Pabrik Kelapa Sawit”, Jurnal Teknik Kimia Universitas Sumatera Utara, Vol. 4, No 4, Medan, 2015.

[24] Peraturan Menteri Lingkungan Hidup Republik Indonesia No 5 Tahun 2014 tentang Baku Mutu Air Limbah.

[25] P. Aswanty, R. Gandhimathi, S. T. Ramesh, and P. V. Nidhesh, Removal of Organics from Bilge Water by Batch Electrocoagulation Process, Separation and Purification Technology, Elsevier, India, 2016.

[26] L. Hung, C. Lin, J. Huang, and S. Yen, “Particle removal performance and its kinetic behavior during oxide-CMP wastewater treatment by electrocoagulation”, Journal of The Taiwan of Chemical Engineers, pp. 1-5, Taiwan, 2015.


Refbacks

  • There are currently no refbacks.




Google Scholar Logo SINTA Logo Logo GARUDA


Copyright EKSPLORIUM: Buletin Pusat Pengembangan Bahan Galian Nuklir (e-ISSN 2503-426x p-ISSN 0854-1418)

National Research and Innovation Agency (BRIN), KA. B.J. Habibie, Jl. M.H. Thamrin No.8, Jakarta, 10340, Indonesia.