Thorium and Total REE Correlation in Stream Sediment Samples from Lingga Regency

Ronaldo Irzon

DOI: http://dx.doi.org/10.55981/eksplorium.2018.3558

Abstract


Rare Earth Elements (REE) are found in variety of minerals, which are mobilized by weathering from adjacent watersheds into streambeds and affect the chemical content. A study of stream sediments is useful to trace the source of metals, as they are representative of the composition of the drainage basin. This study describes trace and rare earth elements geochemistry composition of selected nine stream sediment samples from two major Islands in Lingga Regency, namely Singkep and Lingga. Moreover, the associations of rare earth elements abundance to other elements in selected samples are used on tracing the most possible mineral as REE source. Nine selected stream sediments were identified megascopically and measured for the trace and rare earth elements composition by inductively coupled plasma – mass spectrometry (ICP-MS). The selected samples from Lingga yielded very strong average Zr, Mn, Ba, and Rb compositions of 246 ppm, 172 ppm, 126 ppm, and 84 ppm, respectively. On the other hand, Zr, Mn, Cr, and Rb are the top four abundant trace elements from Singkep with consecutive median value of 486 ppm, 305 ppm, 145 ppm, and 85 ppm. Feltilizer for agricultural area at Lingga most posibly contain As and Rb upon these elements abundances and association. Tin mine activity was found to influence the streambeds composition with low Rb-Cs composition but high Zr-REE abundance. Very strong Th to ∑REE association suggests that thorium-bearing mineral, especially monazite-La, is the main REE source of the selected samples. All of the studied samples exhibit Eu negative anomaly to imply the absence of either detrital apatite or chemical weathering of apatite. Moreover, REE of Lingga stream sediments is averagely more fractionated than Singkep.

 

Unsur Tanah Jarang (UTJ) terkandung dalam berbagai jenis mineral yang dapat termobilisasi akibat pelapukan dari daerah aliran sungai terdekat, terendapkan, dan mempengaruhi kandungan kimianya. Studi mengenai sedimen sungai dapat dimanfaatkan untuk menelusuri sumber logam, sebagaimana sedimen tersebut merupakan bahan penyusun dasar sungai. Penelitian ini menerangkan kandungan geokimia unsur jejak dan tanah jarang dari sembilan contoh sedimen sungai terpilih dari dua pulau besar di Kabupaten Lingga, yaitu: Singkep dan Lingga. Selanjutnya, asosiasi kelimpahan unsur tanah jarang terhadap unsur lain dipergunakan untuk menelusuri mineral yang paling mungkin sebagai sumber UTJ. Sembilan contoh sedimen sungai terpilih telah dideskripsi secara megaskopis dan diukur kandungan unsur jejak dan tanah jarangnya menggunakan inductively coupled plasma – mass spectrometry (ICP-MS). Contoh terpilih dari Pulau Lingga tersusun atas sejumlah tinggi Zr, Mn, Ba, dan Rb, yaitu 246 ppm, 172 ppm, 126 ppm, and 84 ppm secara berurutan. Sementara itu, Zr, Mn, Cr, dan Rb merupakan unsur paling melimpah pada contoh dari Pulau Singkep dengan rataan kelimpahan masing-masing 486 ppm, 305 ppm, 145 ppm, and 85 ppm. Pupuk pertanian di Lingga kemungkinan besar mengandung As dan Rbberdasarkan kelimpahan dan asosiasi mineral tersebut. Aktivitas penambangan timah ditengarai mempengaruhi komposisi endapan sungai dengan komposisi Rb-Cs yang rendah tetapi Zr-REE melimpah. Korelasi kuat Th dan ∑UTJ menunjukkan bahwa mineral mengandung thorium, khususnya monasit-La, merupakan sumber utama UTJ pada contoh terpilih. Seluruh contoh menampakkan anomali negatif Eu yang menandakan ketiadaan apatit detrital maupun pelapukan kimia apatit. Lebih jauh, UTJ pada sedimen sungai Lingga secara rata-rata lebih terfraksinasi dari pada Singkep.


Keywords


stream sediments; Lingga Regency; monazite; REE

Full Text:

PDF

References


[1] D. Alexakis, “Geochemistry of stream sediments as a tool for assessing contamination by Arsenic, Chromium and other toxic elements : East Attica region, Greece,” Eur. Water, vol. 21/22, no. 2001, pp. 57–72, 2008.

[2] O. S. Ayodele and S. A. Akinyemi, “Stream Sediment Geochemistry As A Tool For Assessing Mineral Potentials In Arinta And Olumirin Waterfalls In Ekiti And Osun States, Southwestern Nigeria,” J. Multidiscip. Eng. Sci. Technol., vol. 2, no. 10, pp. 2740–2753, 2015.

[3] E. Dinelli, G. Cortecci, F. Lucchini, and E. Zantedeschi, “Sources of major and trace elements in the stream sediments of the Arno river catchment (northern Tuscany, Italy),” Geochem. J., vol. 39, no. 6, pp. 531–545, 2005.

[4] S. T. Landry et al., “Stream Sediment Geochemical Survey of Gouap-Nkollo Prospect , Southern Cameroon : Implications for Gold and LREE Exploration,” Am. J. Min. Metall., vol. 2, no. 1, pp. 8–16, 2014.

[5] P. K. Mukherjee, K. K. Purohit, N. K. Saini, P. P. Khanna, M. S. Rathi, and A. E. Grosz, “A stream sediment geochemical survey of the Ganga River headwaters in the Garhwal Himalaya,” Geochem. J., vol. 41, pp. 83–95, 2007.

[6] E. E. Adiotomre, “Enhancing Stream Sediment Geochemical Anomalies Using Spatial Imaging: Case Study from Dagbala and Its Environs,” IOSR J. Appl. Geol. Geophys. Ver. II, vol. 2, no. 2, pp. 2321–990, 2014.

[7] E. J. Cobbing, “Granites,” in Sumatra: Geology, Resources and Tectonic Evolution, vol. 31, no. 1, A. J. Barber, M. J. Crow, and J. S. Milsom, Eds. London: Geological Society, London, Memoirs, 2005, p. 54 LP-62.

[8] R. Irzon, “Contrasting Two Facies of Muncung Granite in Lingga Regency Using Major, Trace, and Rare Earth Element Geochemistry,” Indones. J. Geosci. Vol., vol. 2, no. 1, pp. 23–33, 2015.

[9] R. Irzon, I. Syafri, J. Hutabarat, and P. Sendjaja, “REE Comparison Between Muncung Granite Samples and their Weathering Products, Lingga Regency, Riau Islands,” Indones. J. Geosci., vol. 3, no. 3, pp. 149–161, 2016.

[10] S. W. P. Ng et al., “Petrogenesis of Malaysian granitoids in the Southeast Asian tin belt: Part 2. U-Pb zircon geochronology and tectonic model,” Bull. Geol. Soc. Am., vol. 127, no. 9–10, pp. 1238–1258, 2015.

[11] Ngadenin, H. Syaeful, K. S. Widana, and M. Nurdin, “Potensi Thorium Dan Uranium Di Kabupaten Bangka Barat,” Eksplorium, vol. 35, no. 2, pp. 69–84, 2014.

[12] C. S. Hutchison, “Tectonic evolution of Southeast Asia,” Bull. Geol. Soc. Malaysia, vol. 60, no. December, pp. 1–18, 2014.

[13] N. J. Gardiner, J. P. Sykes, A. Trench, and L. J. Robb, “Tin mining in Myanmar: Production and potential,” Resour. Policy, vol. 46, pp. 219–233, 2015.

[14] E. H. Christiansen and J. D. Keith, “Trace element systematics in silicic magmas: A metallogeneic prospective,” Wyman, D.A. (ed.), Trace Elem. geochemistry Volcan. rocks Appl. massive sulfide Explor. Geol. Assoc. Canada, vol. 12, no. May, pp. 115–151, 1996.

[15] I. M. H. R. Antunes, A. M. R. Neiva, M. M. V. G. Silva, and F. Corfu, “Geochemistry of S-type granitic rocks from the reversely zoned Castelo Branco pluton (central Portugal),” Lithos, vol. 103, no. 3–4, pp. 445–465, 2008.

[16] A. Imai, K. Sanematsu, S. Ishida, K. Watanabe, and J. Boosayasak, “Rare Earth Elements in Weathered Crust in Sn-bearing Granitic Rocks in,” no. Great, 2008.

[17] F. Colombo, R. Lira, and M. J. Dorais, “Mineralogy and crystal chemistry of micas from the A-type El Portezuelo Granite and related pegmatites, Catamarca (NW Argentina),” J. Geosci., vol. 55, no. 1, pp. 43–56, 2010.

[18] L. S. Singh and G. Vallinayagam, “High Heat Producing Volcano-Plutonic Rocks of the Siner Area , Malani Igneous Suite , Western Rajasthan, India,” vol. 2012, no. November, pp. 1137–1141, 2012.

[19] D. Majumdar and P. Dutta, “Rare earth element abundances in some A-type Pan-African granitoids of Karbi Hills, North East India,” Curr. Sci., vol. 107, no. 12, pp. 2023–2029, 2014.

[20] S. B. Castor and J. B. Hedrick, “Rare Earth Elements,” Ind. Miner. Rocks, pp. 769–792, 2006.

[21] K. Sutisna, G. Burhan, and B. Hermanto, “Peta Geologi Lembar Dabo, Sumatera, skala 1: 250.000,” Pus. Penelit. dan Pengemb. Geol. Bandung, 1994.

[22] R. Irzon, “Genesis Granit Muncung dari Pulau Lingga Berdasarkan Data Geokimia dan Mikroskopis,” J. Geol. dan Sumberd. Miner., vol. 16, no. 3, pp. 141–149, 2015.

[23] E. J. Cobbing, D. I. J. Mallick, P. E. J. Pitfield, and L. H. Teoh, “The granites of the Southeast Asian tin belt,” J. Geol. Soc. London., vol. 143, no. 3, pp. 537–550, 1986.

[24] H. H. Ho, R. Swennen, and A. Van Damme, “Distribution and contamination status of heavy metals in estuarine sediments near cua ong harbor, Ha Long Bay Vietnam,” Geol. Belgica, vol. 13, no. 1–2, pp. 37–47, 2010.

[25] “Pemerintah Daerah Kabupaten Lingga,” 2015.

[26] R. Salminen et al., Geochemical atlas of Europe, part 1, background information, methodology and maps. Geological survey of Finland, 2005.

[27] A. Ramachandran et al., “Geochemistry of Proterozoic clastic rocks of the Kerur Formation of Kaladgi-Badami Basin, North Karnataka, South India: implications for paleoweathering and provenance,” Turkish J. Earth Sci., vol. 25, no. 2, pp. 126–144, 2016.

[28] R. Irzon, P. Sendjadja, Imtihanah, Kurnia, and J. Soebandrio, “Kandungan Rare Earth Elements Dalam Tailing Tambang Timah,” J. Geol. dan Sumberd. Miner., vol. 15, no. 3, pp. 143–151, 2014.

[29] Y. Ahmed-Said and B. E. Leake, “S-type granite formation in the Dalradian rocks of Connemara, W. Ireland,” Mineral. Mag., vol. 54, no. 374, pp. 1–22, 1990.

[30] M. E. P. Gomes and A. M. R. Neiva, “Petrogenesis of Tin-bearing Granites from Ervedosa, Northern Portugal: The Importance of Magmatic Processes,” Chemie der Erde - Geochemistry, vol. 62, no. 1, pp. 47–72, 2002.

[31] M. T. Aide and C. Aide, “Rare Earth Elements : Their Importance in Understanding Soil Genesis,” vol. 2012, 2012.

[32] M. I. Leybourne and K. H. Johannesson, “Rare earth elements (REE) and yttrium in stream waters, stream sediments, and Fe–Mn oxyhydroxides: fractionation, speciation, and controls over REE+ Y patterns in the surface environment,” Geochim. Cosmochim. Acta, vol. 72, no. 24, pp. 5962–5983, 2008.

[33] M. P. Searle et al., “Tectonic evolution of the Sibumasu − Indochina terrane collision zone in Thailand and Malaysia : constraints from new U − Pb zircon chronology of SE Asian tin granitoids Tectonic evolution of the Sibumasu – Indochina terrane collision zone in Thailand and,” J. Geol. Soc. Tecton., vol. 169, pp. 489–500, 2012.

[34] W. F. bin Wan Hassan, “Some characteristics of the heavy detrital minerals from Peninsular Malaysia,” Bull. Geol. Soc. Malaysia, vol. 24, no. October, pp. 1–12, 1989.

[35] Z. Hamzah, N. M. Ahmad, and A. Saat, “Determination of Heavy Minerals in ‘Amang’ from Kampung Gajah Ex-mining Area (Penentuan Mineral Berat Dalam ‘Amang’ Dari Kawasan Bekas Lombong Kampung Gajah),” Malaysian J. Anal. Sci., vol. 13, no. 2, pp. 194–203, 2009.

[36] N. Ngadenin and A. J. Karunianto, “Identifikasi Keterdapatan Mineral Radioaktif pada Granit Muncung Sebagai Tahap Awal untuk Penilaian Prospek Uranium dan Thorium di Pulau Singkep,” Eksplorium Bul. Pus. Teknol. Bahan Galian Nukl., vol. 37, no. 2, pp. 63–72, 2016.

[37] S. R. Taylor and S. M. McLennan, “The continental crust: its composition and evolution,” 1985.

[38] W. V Boynton, “Cosmochemistry of the rare earth elements: meteorite studies,” in Rare earth element geochemistry, Elsevier, 1983.

[39] D. Roberts and A. L. Nissen, “Geochemical changes accompanying mylonitisation of granite at the base of the Helgeland Nappe Complex, Nord-Trøndelag, central Norway,” NGU-Bull, vol. 446, pp. 0–6, 2006.

[40] C. R. Neal and L. A. Taylor, “A negative Ce anomaly in a peridotite xenolith: evidence for crustal recycling into the mantle or mantle metasomatism?,” Geochim. Cosmochim. Acta, vol. 53, no. 5, pp. 1035–1040, 1989.


Refbacks

  • There are currently no refbacks.




Google Scholar Logo SINTA Logo Logo GARUDA


Copyright EKSPLORIUM: Buletin Pusat Pengembangan Bahan Galian Nuklir (e-ISSN 2503-426x p-ISSN 0854-1418)

National Research and Innovation Agency (BRIN), KA. B.J. Habibie, Jl. M.H. Thamrin No.8, Jakarta, 10340, Indonesia.