Kajian Konsep Teknologi Pengolahan Pasir Zirkon Lokal yang Mengandung Monasit, Senotim dan Ilmenit

Herry Poernomo, Dwi Biyantoro, Maria Veronica Purwani

DOI: http://dx.doi.org/10.55981/eksplorium.2016.3054

Abstract


ABSTRAK

Keberadaan zirkon (ZrSiO4) di alam kebanyakan berasosiasi dengan beberapa senyawa oksida berharga (SOB) seperti TiO2 dan oksida logam tanah jarang atau rare earth oxides (REO). Keterdapatan mineral alam di Indonesia yang mengandung zirkonium (Zr) dan REO tersebar di 13 wilayah mulai dari Provinsi Aceh sampai Papua Barat. Berdasarkan hal tersebut, maka tujuan penelitian adalah melakukan kajian integrasi teknologi pengolahan pasir zirkon lokal yang mengandung TiO2 dan REO. Penelitian dilakukan dengan menganalisis kandungan SOB dalam sampel pasir zirkon dari daerah Landak dan Tumbang Titi Kalimantan Barat serta Bangka menggunakan XRF. Berdasarkan kandungan SOB dalam pasir zirkon tersebut dapat diprediksi bahwa pasir zirkon dari daerah Landak dan Tumbang Titi Kalimantan Barat serta Bangka mengandung mineral zirkon (ZrSiO4), ilmenit (FeTiO3), monasit (LREE, Th)PO4, dan senotim (HREE, Y, Th)PO4. Berbasis jenis mineral tersebut diperoleh hasil kajian berupa diagram alir proses konsep teknologi konsentrat zirkon menjadi ZrO2 (zirkonia) dan ZrOCl2.8H2O (zirkonium oksiklorida) derajat industri serta zirkonia dan zirconium chemicals derajat nuklir, ilmenit menjadi TiO2, monasit menjadi Nd2O3 dan konsentrat Th(OH)4, senotim menjadi Y2O3, Gd2O3 dan konsentrat Th(OH)4 dalam satu kawasan pilot plant atau pabrik yang terintegrasi. Hasil kajian disimpulkan bahwa konsep pengolahan pasir zirkon lokal yang mengandung monasit, senotim, dan ilmenit dapat dilakukan secara terintegrasi dalam satu kawasan pabrik dengan hasil multi produk. Jika hal tersebut dapat direalisasikan di Indonesia dengan tambahan sistem pengolahan air limbah terpadu, maka selain aman bagi lingkungan juga dapat menghemat biaya produksi dan memberikan nilai tambah ekonomi bagi para pemegang izin usaha pertambangan zirkon.

 

ABSTRACT

The existence of zircon (ZrSiO4) in the nature is mostly associated with some of the valuable oxide compounds (VOC), such as TiO2 and rare earth oxides (REO). The existence of natural minerals in Indonesia containing zirconium (Zr) and REO lies in 13 regions, ranging from Aceh to West Papua province. Based on those aforementioned aspects, the goal of this research is to conduct the study of integrated technology of local zircon sand processing containing TiO2 and REO. The study was conducted by analyzing the content of VOC in zircon sand samples from the areas of Landak and Tumbang Titi West Kalimantan and Bangka by using XRF. Based on the content of VOC in this zircon sand, it can be predicted that the zircon sand from the area of Landak and Tumbang Titi West Kalimantan and Bangka contains mineral zircon (ZrSiO4), ilmenite (FeTiO3), monazite (LREE, Th)PO4, and xenotime (HREE, Th)PO4. Based on these types of mineral, the flow chart of beneficiation technology process to increase the concentration of each mineral and the flow chart of zircon concentrate process into ZrO2(zirconia) and ZrOCl2.8H2O (zirconium oxychloride) industrial grade and zirconia and zirconium chemicals nuclear grade, ilmenite into TiO2, monazite into Nd2O3, and Th(OH)4 concentrate, xenotime into Y2O3, Gd2O3, and Th(OH)4 concentrate are obtained in one area of pilot plant or an integrated factory. The results of the study concluded that the concept of local processing of zircon sands containing monazite, xenotime, and ilmenite can be either integrated in the region with the results of multi-product plant. If it can be realized in Indonesia with the addition of an integrated waste water treatment system, then in addition to safe for the environment can also save on production costs and give economic added value for shareholders zircon mining permit


Keywords


pengolahan; pasir zirkon; ilmenit; monasit; senotim

References


[1] Republik Indonesia, Pertambangan Mineral dan Batubara, Undang-Undang Republik Indonesia Nomor 4 Tahun 2009.

[2] Republik Indonesia, Perubahan atas Peraturan Menteri ESDM Nomor Peningkatan Nilai Tambah Mineral Melalui Kegiatan Pengolahan dan Pemurnian Mineral di Dalam Negeri, Peraturan Menteri ESDM Nomor 8 Tahun 2015.

[3] E. Suwargi, B. Pardiarto, dan T Ishlah, "Potensi Logam Tanah Jarang di Indonesia," Buletin Sumber Daya Geologi, 5, 131-140, 2010.

[4] Y. Dahlan, Pramusanto, N. Saleh, E. Setyatmoko, S. Sumantri, dan E. Rahmawati, "Pembuatan Zirkonia dengan Metoda Peleburan Pasir Zirkon," Puslitbang Tekmira, 27, 2009.

[5] K. Szama£ek, G. K. Marciniak-Maliszewsk, “New Potential Source of Rare Earth Elements,” Gospodarka Surowcami
Mineralnymi, DOI 10.2478/gospo-2013-0041, 2013.

[6] C. Jan and Bongaerts, “Production Process and Recycling of Rare Earth Elements," The IMRE Journal, 7, 1-9, 2013.

[7] G. J. Bryant, “Examining Perspectives on China’s Near-Monopoly of Rare Earths Elements," A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Arts in Asian Student, Florida International University, 9, 2015.

[8] D. P. Herman, “Potensi Mineral Cassiterite dan Ilmenite pada Daerah Bekas Penambangan Timah Bangka,” Jurnal Promine, 3 (2), 30-41, 2015.

[9] T. Phonkhokkong, T. Thongtem, S. Thongtem, A. Phuruangrat, and W. Promnopas, “Synthesis and Characterization of TiO2 Nanopowders for Fabrication of Dye Sensitized Solar Cell,” Digest Journal of Nanomaterials and Biostructures, 11 (1), 81-90, 2016.

[10] M. Hariharan, N. Varghese, and A. Benny Cherian, “Influence of Chitosan on the Surface Morphology of Titanium Dioxide Nano Particles,” International Journal of Engineering Science & Research Technology, 4 (9), 427-431, 2015.

[11] S. Bagheri, D. Ramimoghadam, A. Termeh, Yousefi, and S.B.A. Hamid, “Synthesis, Characterization and Electrocatalytic Activity of Silver Doped-Titanium Dioxide Nanoparticles,” Int. J. Electrochem. Sci., 10, 3088-3097, 2015.

[12] Y. Z. Zeng, Y. C. Liu, Y. F. Lu, and J. C. Chung, “Study on the Preparation of Nanosized Titanium Dioxide with Tubular Structure by Hydrothermal Method and Their Photocatalytic Activity,” International Journal of Chemical Engineering and Applications, 5 (3), 234-239, 2014.

[13] V. Vetrivel, K. Rajendran, and V. Kalaiselvi, “Synthesis and Characterization of Pure Titanium Dioxide Nanoparticles by Sol-gel Method, Int.J. ChemTech Res., 7(3),1090-1097, 2015.

[14] R. Sharmila Devi, R. Venckatesh, and R. Sivaraj, “Synthesis of Titanium Dioxide Nanoparticles by Sol-Gel Technique”, International Journal of Innovative Research in Science, Engineering and Technology”, 3 (8), 15206-15211, (2014).

[15] P. B. Rathod, K. R. Nemade, and S. A. Waghule, “Study of Structure and Optical for Chemically Synthesized Titanium Dioxide Nanoparticles,” International Journal of Chemical and Physical Sciences, 4, 491-495, (2015).

[16] I. S. Kumar, M. Polasa, C. H. S. Chakra, and K. V. Rao, “Preparation and Characterization of Titanium Dioxide Nanoparticles by Olyvinylpyrrolidone, Hydrothermal Processes,” International Journal of Multidiciplinary Advances Research Trends, 2 (1), 264-272, (2015).

[17] P. Tharanya, K. Vadakkan, J. Hemapriya, V. R. Kannan, and S. Vijayanand, “Biogenic Approach for the Synthesis of Titanium Dioxide Nanoparticles Using a Halophilic Bacterial Isolate - Chromohalobacter SalexigensStrain PMT-1,” Int.J.Curr.Res.Aca.Rev., 3(10), 334-342, 2015.

[18] E. Kumar, D. M. Raj, S. C. Velladurai, S. K. Devi, and A. J. Begam, “Synthesis and Structural Investigations of Titanium Di- oxide (TiO2) Nanoparticles by Microwave Assisted Method,” International Research Journal of Engineering and Technology, 02 (09), 458-461, 2015.

[19] D. Davis and C.R. Divya, “Reduction of Air Pollution from Vehicles Using Titanium Dioxide,” International Research Journal of Engineering and Technology, 02 (05), 1308-1314, 2015.

[20] V. Chaudhary and P. S. Chaudhary, “Synthesis and Characterization of Titanium Dioxide Nanostructures based Photocatalysts for Degradation of Rose Bengal,” International Journal of Innovative Science, Engineering & Technology, 3 (6), 772-783, 2016.

[21] M. Bonnet, C. Massard, P. Veisseire, O. Camares, and K.O. Awitor, “Environmental Toxicity and Antimicrobial Efficiency of Titanium Dioxide Nanoparticles in Suspension,” Journal of Biomaterials and Nanobiotechnology, 6, 213-224, 2015.

[22] S. S. Al-Taweel and H. R. Saud, "New Route for Synthesis of Pure Anatase TiO2 Nanoparticles Via Utrasound Assisted Sol-gel Method,” Journal of Chemical and Pharmaceutical Research, 8 (2), 620-626, 2016.

[23] D. W. Skaf, A. M. Grannas, R. D. Weinstein, and R. Greeley, “Photocatalytic Oxidation of Dimethyl Methylphosphonate in Aqueous Suspensions of TiO2,” J Chem Eng Process Technol, 6 (3), 2-6, 2015.

[24] Y. Tao, Z. Han, Z. Cheng, Q. Liu, F. Wei, K. E. Ting, and X. J. Yin, “Synthesis of Nanostructured TiO2 Photocatalyst with Ultrasonication at Low Temperature,” Journal of Materials Science and Chemical Engineering, 3, 29-36, 2015.

[25] M. N. Chong, Z. Y. Tneu, P. E. Poh, B. Jin, and R. Aryal, “Synthesis, Characterisation and Application of TiO2–zeolite Nanocomposites for the Advanced Treatment of Industrial Dye Wastewater,” Journal of the Taiwan Institute of Chemical Engineers, 1–9, 2014.

[26] World NuclearAssociation, “Naturally Occuring Radioactive Materials (NORM),” 2014. [Daring]. Laman: http://www.world-nuclear.org/info/Safety-and-Security/Radiation-and-He. [Diakses: 05-Jan-2015].

[27] Republik Indonesia, Pelaksanaan Kegiatan Usaha Pertambangan Mineral dan Batubara, Peraturan Pemerintah Republik Indonesia No.23 Tahun 2010.

[28] D. Z. Herman, “Kemungkinan Sebaran Zirkon pada Endapan Placer di Pulau Kalimantan,” Jurnal Geologi Indonesia, 2, 87-96, 2007.

[29] Sudarto, Kallista, dan D. Hermawan, “Kajian Teknis Aspek Pengawasan Bahan Nuklir dalam Pasir Zirkon,” Prosiding Seminar Nasional Sains dan Teknologi-II 2008 Universitas Lampung, hal. IV-31 s.d. IV-38, 17-18 November, 2008.

[30] “Indonesia Punya Cadangan Mineral Langka,” 2012. [Daring]. Laman: http://energitoday.com/2012/10/03/ indonesiapunya-cadangan-mineral-langka/. [Diakses: 05-Jan-2013].

[31] Alkane Resources Ltd., “The Pilot Plant: Key to Successful Process and Market, Development, Dubbo Zirconia Project,” 2013. [Daring]. Laman: http://www.alkane.com.au/. [Diakses: 05-Jan-2014].

[32] W. A. Rambeck, “Rare Earth Elements in Agriculture with Emphasis on Animal Husbandry,” Inaugural-Dissertation zur Erlangung der Tiermedizinischen Doktorwürde, der Tierärztlichen Fakultät, der Ludwig-Maximilians-Universität München, 25, 2006.

[33] H. Poernomo dan E. Susiantini, “Penilaian Teknologi Pembuatan Zirkonia dari Pasir Zirkon secara Proses Basah dan Kering,” Prosiding Seminar Nasional Teknologi Energi Nuklir, hal. 601-614, 15-16 Oktober, 2015.

[34] M. V. Purwani dan Prayitno, “Ekstraksi Konsentrat Neodimium Memakai Tri Oktil Amin,” Jurnal Iptek Nuklir Ganendra,17, 17–26, 2014.

[35] M. V. Purwani dan Prayitno, “Pemisahan Th dan Ce dari Konsentrat Serium Nitrat Hasil Olah Monasit dengan Cara Ekstraksi Bertingkat,” J.Tek.Bhn.Nukl., 33-42, 2014.

[36] K. Binnemans and P. T. Jones, “Rare Earths and the Balance Problem,” J. Sustain. Metall, 2015.

[37] B. Arun, J. Varghese, K. P. Surendran, and M. T. Sebastian, “Microwave Dielectric and Thermal Properties of Mixed Rare Earth, Ortho phosphate [REmixPO4],” Ceramics International, 40, 13075–1308, 2014.

[38] R. L. Linnen, I. M. Samson, A. E. Williams-Jones, and A. R. Chakhmouradian,“Geochemistry of the Rare-Earth Element, Nb, Ta, Hf, and Zr Deposits,” Elsevier Ltd., 543-564, 2014.

[39] S. C. Chelgani, B. Hart, and L. Xia, “A TOFSIMS Surface Chemical Analytical Study of Rare Earth Element Minerals from Micro-Flotation Tests Products,” Minerals Engineering, 45, 32–40, 2013.

[40] Capital Mining Ltd., “Resource Estimate Update Confirms Rare Earth Potential Narraburra Project,” NSW, 09 November, 2011.

[41] M. Saxon, M. Leijd, K. Forrester, and J. Berg, “Geology, Mineralogy, and Metallurgical Processing of the Norra Kärr Heavy REE Deposit, Sweden,” In: Symposium on Critical and Strategic Materials Proceedings, pp. 97-107, November 13-14, 2015.

[42] B. Guan and D. Yu, “Flotation Flowsheet Development for Avalon Rare Metal’s Nechalacho Deposit,” Proceedings of the 52nd Conference of Metallurgists (COM), pp. 115-132, October 27-31, 2013.

[43] Alkane Resources Ltd., “The Pilot Plant: Key to Successful Process and Market, Development, Dubbo Zirconia Project,” Industrial Minerals International Conggress and Exshibition, Vancouver-Canada, 2014. [Daring]. Laman: http://www.alkane.com.au/. [Diakses: 03-Dec-2014].

[44] Alkane Resources Ltd., “Annual General Meeting, Perth,” 2013. [Daring]. Laman: http://www.alkane.com.au/. [Diakses: 05-Jan-2014].

[45] Avalon Rare Metals Inc., “Annual Report December 02,” IMCOA, 2012.

[46] U.S. Geological Survey, “Mineral Commodity Summaries,” 2016. [Daring]. Laman: http://minerals.usgs.gov/minerals/pubs/commodity/rare_earths/mcs-2016-raree.pdf. [Diakses: 01-Jun-2016].

[47] “Strategic Metals & Rare Earths Letter International,” 2014. [Daring]. Laman: http://www.metalcommodities-ip.com/wpcontent/uploads/2015/10/SMRE_LETTER_June2015Update.pdf. [Diakses: 05-Jan-2016].

[48] Argus Consulting Services, “Argus Rare Earths Monthly Outlook,” Issue 14-11, November 3, 2014.

[49] “Samarium Oxide Price Worldwide from 2009 to 2025 (In U.S. Dollars per Metric Ton).” [Daring]. Laman: http://www.statista.com/statistics/450155/globalreo-samarium-oxide-price-forecast/. [Diunduh:05-Jun-2016].

[50] “Gadolinium Oxide Price Worldwide from 2009 to 2025 (In U.S. Dollars per Metric Ton).” [Daring]. Laman: http://www.statista.com/statistics/450160/global-reo-gadolinium-oxideprice-forecast/. [Diakses: 05-Jun-2016].

[51] “Holmium Oxide Price Worldwide from 2010 to 2025 (In U.S. Dollars per Metric Ton).” [Daring]. Laman: http://www.statista.com/statistics/450166/global-reo-holmium-oxide-priceforecast/. [Diakses: 05-Jun-2016].

[52] “Erbium Oxide Price Worldwide from 2009 to 2025 (In U.S. Dollars per Metric Ton).” [Daring]. Laman: http://www.statista.com/statistics/450172/global-reo-erbium-oxide-price-forecast/. [Diakses: 05-Jun-2016].

[53] “Ytterbium Oxide Price Worldwide from 2010 to 2025 (In U.S. dollars per Kilogram).” [Daring]. Laman: http://www.statista.com/statistics/450173/global-reo-ytterbium-oxide-priceforecast/. [Diakses: 05-Jun-2016].

[54] “The Statistics Portal.” [Daring]. Laman: http://www.statista.com/ statistics/450175/globalreo-lutetium-oxide-price-forecast/. [Diakses: 05-Jun-2016].

[55] “Yttrium Oxide Price Worldwide from 2010 to 2025 (In U.S. Dollars per Kilogram).” [Daring]. Laman: http://www.statista.com/statistics/450176/globalreo-yttrium-oxide-price-forecast/. [Diakses: 05-Jun-2016].

[56] G. Scott, “Quarterly Activities Report and Appendix 5 B,” Peak Resources Ltd., March 2016.

[57] G. J. Simandl and M. Neetz, “Which Materials are Critical and Strategic,” Symposium on Critical and Strategic Materials Proceedings, p.3, November 13-14, 2015.

[58] H. Poernomo, E. Kismolo, dan E. Supriyatni, “Konsep Pengelolaan Limbah TENORM pada Pembuatan Zirkonium Oksiklorid dari Pasir Zirkon,” Prosiding Seminar Nasional Teknologi Energi Nuklir, hal. 379-390, 19 Juni, 2014.

[59] Suyanti dan M. V. Purwani, “Pembuatan TiO2dari Ilmenit Tailing BenefisiasiMineral Zirkon,” Prosiding Seminar Nasional Temu Ilmiah Jaringan Kerjasama Kimia Indonesia (Jasakiai), Seminar Nasional XXIV Kimia dalam Industri dan Lingkungan, hal. 181-211, 1 Februari, 2016.

[60] Suyanti, M. V. Purwani, dan Muhadi, “Peningkatan Kadar Neodimium secara Proses Pengendapan Bertingkat Memakai Amonia,” Prosiding Seminar IV SDM Teknologi Nuklir, hal. 429-438, 25-26 Agustus, 2008.

[61] “High Purity Chemicals for Research and Production, Noah Technologies Corporation, 1 Noah Park San Antonio.” [Daring]. Laman: http://www.noahtech.com/frameset.asp?id=catalog_search. [Diakses: 19-Mar-2012].


Refbacks

  • There are currently no refbacks.




Google Scholar Logo SINTA Logo Logo GARUDA


Copyright EKSPLORIUM: Buletin Pusat Pengembangan Bahan Galian Nuklir (e-ISSN 2503-426x p-ISSN 0854-1418)

National Research and Innovation Agency (BRIN), KA. B.J. Habibie, Jl. M.H. Thamrin No.8, Jakarta, 10340, Indonesia.